|   36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541 | class ImageCube(object):
    """ Class to handle a multi-frequency, multi-epoch Image data set
    Attributes:
        freqs (list[float]): Frequencies of the ImageCube in Hz
        dates (list[str]): Dates included in the ImageCube
        mjds (list[float]): MJDs included in the ImageCube
        name (str): Source Name
        date_tolerance (float): Difference in days to consider the same epoch
        freq_tolerance (float): Difference in GHz to consider the same frequency
        images (list[list[ImageData]]): 2d-array of ImageData objects
        comp_collections (list[ComponentCollection]): List of Component Collections (one collection per ID)
        images_freq (list[list[float]]): 2d-array of frequencies in Hz
        images_mjd (list[list[float]]): 2d-array of MJDs
        images_majs (list[list[float]]): 2d-array of Beam Major Axis
        images_mins (list[list[float]]): 2d-array of Beam Minor Axis
        images_pas (list[list[float]]): 2d-array of Beam position angle (in degree)
        noises (list[list[float]]): 2d-array of Image noises
    """
    def __init__(self,
                 image_data_list=[], #list of ImageData objects
                 date_tolerance=1, #date tolerance to consider "simultaneous"
                 freq_tolerance=1, #frequency tolerance to consider the same,
                 new_import=True
                 ):
        """
        Initialize ImageCube class.
        Args:
            image_data_list (list[ImageData]): List of ImageData objects
            date_tolerance (float): Difference in days to consider the same epoch
            freq_tolerance (float): Difference in GHz to consider the same frequency
        """
        self.freqs=[]
        self.dates=[]
        self.mjds=[]
        self.name=""
        self.redshift=0
        self.date_tolerance=date_tolerance
        self.freq_tolerance=freq_tolerance
        images=[]
        #go through image data list and extract some info
        for image in image_data_list:
            if self.redshift==0:
                self.redshift=image.redshift
            if self.name=="":
                self.name=image.name
            elif self.name != image.name and new_import:
                logger.warning(f"ImageCube setup for source {self.name} but {image.name} detected in one input file!")
            if not any(abs(num - image.freq) <= freq_tolerance*1e9 for num in self.freqs):
                self.freqs.append(image.freq)
            if not any(abs(num - image.mjd) <= date_tolerance for num in self.mjds):
                self.dates.append(image.date)
                self.mjds.append(image.mjd)
            images.append(image)
        image_data_list=images
        self.freqs=np.sort(self.freqs)
        self.dates=np.sort(self.dates)
        self.mjds=np.sort(self.mjds)
        self.images=np.empty((len(self.dates),len(self.freqs)),dtype=object)
        self.images_freq = np.empty((len(self.dates), len(self.freqs)), dtype=float)
        self.images_mjd = np.empty((len(self.dates), len(self.freqs)), dtype=float)
        self.images_majs = np.empty((len(self.dates), len(self.freqs)), dtype=float)
        self.images_mins = np.empty((len(self.dates), len(self.freqs)), dtype=float)
        self.images_pas = np.empty((len(self.dates), len(self.freqs)), dtype=float)
        self.noises = np.empty((len(self.dates), len(self.freqs)), dtype=float)
        for i,mjd in enumerate(self.mjds):
            for j, freq in enumerate(self.freqs):
                for image in image_data_list:
                    if (abs(image.mjd-mjd)<=date_tolerance) and (abs(image.freq-freq)<=freq_tolerance*1e9):
                        self.images[i,j]=image
                        self.images_mjd[i,j]=image.mjd
                        self.images_freq[i,j]=image.freq
                        self.images_majs[i,j]=image.beam_maj
                        self.images_mins[i,j]=image.beam_min
                        self.images_pas[i,j]=image.beam_pa
                        self.noises[i,j]=image.noise
        self.shape=self.images.shape
        #assign component collections
        self.comp_collections=self.get_comp_collections(date_tolerance,freq_tolerance)
    #print out some basic details
    def __str__(self):
        print_freqs=[]
        for freq in self.freqs:
            print_freqs.append("{:.0f}".format(freq * 1e-9) + " GHz")
        if self.shape[1]==1 and self.shape[0]==1:
            line1 = f"ImageCube for source {self.name} with {self.shape[1]} frequency and {self.shape[0]} epoch.\n"
            line2 = f"Frequency [GHz]: " + ", ".join(print_freqs) + "\n"
            line3 = f"Epoch: " + ", ".join(self.dates)
        elif self.shape[1]==1:
            line1 = f"ImageCube for source {self.name} with {self.shape[1]} frequency and {self.shape[0]} epochs.\n"
            line2 = f"Frequency [GHz]: " + ", ".join(print_freqs) + "\n"
            line3 = f"Epochs: " + ", ".join(self.dates)
        elif self.shape[0]==1:
            line1 = f"ImageCube for source {self.name} with {self.shape[1]} frequencies and {self.shape[0]} epoch.\n"
            line2 = f"Frequencies [GHz]: " + ", ".join(print_freqs) + "\n"
            line3 = f"Epoch: " + ", ".join(self.dates)
        else:
            line1= f"ImageCube for source {self.name} with {self.shape[1]} frequencies and {self.shape[0]} epochs.\n"
            line2 = f"Frequencies [GHz]: " + ", ".join(print_freqs) + "\n"
            line3 = f"Epochs: " + ", ".join(self.dates)
        return line1+line2+line3
    def import_files(self,fits_files="", uvf_files="", stokes_q_files="", stokes_u_files="", model_fits_files="",
                     date_tolerance=1,freq_tolerance=1,**kwargs):
        """
        Function to import ImageCube directly from (.fits-)files.
        Args:
            fits_files (list[str]): List of Stokes-I or full-polarization .fits file
            uvf_files (list[str]): List of .uvf-files
            stokes_q_files (list[str]): List of Stokes Q .fits files
            stokes_u_files (list[str]): List of Stokes U .fits files
            model_fits_files (list[str]): List of modelfit .fits files (.mod files work as well, but must be sorted)
            **kwargs: Additional options as in ImageData (will be applied to all Images, e.g. 'noise_method')
        Returns:
            image_cube(ImageCube): ImageCube object
        """
        if len(fits_files)==0 and len(model_fits_files)>0:
            fits_files=model_fits_files
        n=len(fits_files)
        if len(uvf_files)!=n and not uvf_files=="":
            raise Exception("Number of uvf_files does not match fits_files!")
        if len(stokes_q_files) != n and not stokes_q_files == "":
            raise Exception("Number of stokes_q_files does not match fits_files!")
        if len(stokes_u_files) != n and not stokes_u_files == "":
            raise Exception("Number of stokes_u_files does not match fits_files!")
        if len(model_fits_files) != n and not model_fits_files == "":
            raise Exception("Number of model_fits_files does not match fits_files!")
        #sort input files
        fits_files=sort_fits_by_date_and_frequency(fits_files)
        uvf_files=sort_uvf_by_date_and_frequency(uvf_files)
        stokes_q_files=sort_fits_by_date_and_frequency(stokes_q_files)
        stokes_u_files=sort_fits_by_date_and_frequency(stokes_u_files)
        try:
            model_fits_files=sort_fits_by_date_and_frequency(model_fits_files)
        except:
            logger.warning("model_fits_files need to be .fits file! Will continue assuming the .mod files are sorted by date and frequency, ascending!")
        if len(fits_files)==0 and len(model_fits_files)>0:
            fits_files=model_fits_files
        #initialize image array
        images=[]
        logger.info("Importing images:")
        for i in tqdm(range(len(fits_files)),desc="Processing"):
            fits_file = fits_files[i] if isinstance(fits_files, list) else ""
            uvf_file = uvf_files[i] if isinstance(uvf_files, list) else ""
            stokes_q_file = stokes_q_files[i] if isinstance(stokes_q_files, list) else ""
            stokes_u_file = stokes_u_files[i] if isinstance(stokes_u_files, list) else ""
            model_fits_file = model_fits_files[i] if isinstance(model_fits_files, list) else ""
            images.append(ImageData(fits_file=fits_file,uvf_file=uvf_file,stokes_q=stokes_q_file,stokes_u=stokes_u_file,model=model_fits_file,**kwargs))
        logger.info(f"Imported {len(fits_files)} images successfully.")
        #reinitialize instance
        return ImageCube(image_data_list=images,date_tolerance=date_tolerance,freq_tolerance=freq_tolerance)
    def masking(self,mode="all",mask_type="ellipse",args=False):
        """
        Function to apply mask to images included in Image Cube
        Args:
            mode (str): Choose apply mode ('all', 'freq', 'epoch'), will apply independent mask for 'all', per 'epoch' or per 'frequency'
            mask_type (str or list[str]): Mask type, if 'freq' or 'epoch' mode can be list
            args: Mask argument
        Returns:
            ImageCube with masked images
        """
        images = []
        if mode == "all":
            for image in self.images.flatten():
                if isinstance(image, ImageData):
                    image.masking(mask_type=mask_type,args=args)
                    images.append(image)
        elif mode == "freq":
            for i in range(len(self.freqs)):
                # check if parameters were input per frequency or for all frequencies
                mask_type_i = mask_type[i] if isinstance(mask_type, list) else mask_type
                args_i = args[i] if isinstance(mask_type, list) else args
                image_select = self.images[:, i]
                for image in image_select:
                    if isinstance(image, ImageData):
                        image.masking(mask_type=mask_type_i, args=args_i)
                        images.append(image)
        elif mode == "epoch":
            for i in range(len(self.dates)):
                # check if parameters were input per epoch or for all epochs
                mask_type_i = mask_type[i] if isinstance(mask_type, list) else mask_type
                args_i = args[i] if isinstance(mask_type, list) else args
                image_select = self.images[i, :]
                for image in image_select:
                    if isinstance(image, ImageData):
                        image.masking(mask_type=mask_type_i,args=args_i)
                        images.append(image)
        else:
            raise Exception("Please specify valid masking mode ('all', 'epoch', 'freq')!")
        return ImageCube(image_data_list=images,date_tolerance=self.date_tolerance,freq_tolerance=self.freq_tolerance,
                         new_import=False)
    def stack(self,mode="freq", stack_linpol=False):
        """
        Args:
            mode: Select mode ("all" -> stack all images, "freq" -> stack all images from the same frequency across epochs, "epoch" -> stack all images from the same epoch across all frequencies)
            stack_linpol: If true, polarization will be stacked in lin_pol and EVPA instead of Q and U (not implemented yet!)
        Returns:
            image_cube (ImageCube): new ImageCube with reduced dimension according to mode selection with stacked images
        """
        #TODO implement stack_linpol option -> how to handle new ImageData object without new fits file?
        new_fits_files=[]
        if mode=="all":
            stokes_i_fits=[]
            stokes_q_fits=[]
            stokes_u_fits=[]
            for image in self.images.flatten():
                stokes_i_fits.append(image.file_path)
                if image.stokes_q_path!="":
                    stokes_q_fits.append(image.stokes_q_path)
                if image.stokes_u_path!="":
                    stokes_u_fits.append(image.stokes_u_path)
            new_fits_i = self.images.flatten()[0].model_save_dir + "mod_files_clean/" + self.name + "_stacked.fits"
            if len(stokes_i_fits)!=len(stokes_q_fits) or len(stokes_i_fits)!=len(stokes_u_fits):
                logger.warning("Polarization data not present or invalid, will only stack Stokes I!")
                logger.info("Stacking images")
                stack_fits(fits_files=stokes_i_fits,output_file=new_fits_i)
            else:
                logger.info("Stacking images")
                stack_fits(fits_files=stokes_i_fits,stokes_q_fits=stokes_q_fits,stokes_u_fits=stokes_u_fits,
                           output_file=new_fits_i)
            new_fits_files.append(new_fits_i)
        elif mode=="freq":
            for i in range(len(self.freqs)):
                stokes_i_fits = []
                stokes_q_fits = []
                stokes_u_fits = []
                for image in self.images[:,i].flatten():
                    if image.file_path!="":
                        stokes_i_fits.append(image.file_path)
                    if image.stokes_q_path != "":
                        stokes_q_fits.append(image.stokes_q_path)
                    if image.stokes_u_path != "":
                        stokes_u_fits.append(image.stokes_u_path)
                new_fits_i = (self.images.flatten()[0].model_save_dir + "mod_files_clean/" +
                              self.name + "_" + "{:.0f}".format(self.freqs[i]*1e-9).replace(".","_") + "GHz_stacked.fits")
                if len(stokes_i_fits) != len(stokes_q_fits) or len(stokes_i_fits) != len(stokes_u_fits):
                    logger.warning("Polarization data not present or invalid, will only stack Stokes I!")
                    logger.info(f"Stacking images for {self.freqs[i]*1e-9:.1f} GHz.")
                    stack_fits(fits_files=stokes_i_fits, output_file=new_fits_i)
                else:
                    logger.info(f"Stacking images for {self.freqs[i] * 1e-9:.1f} GHz.")
                    stack_fits(fits_files=stokes_i_fits, stokes_q_fits=stokes_q_fits, stokes_u_fits=stokes_u_fits,
                               output_file=new_fits_i)
                new_fits_files.append(new_fits_i)
        elif mode=="epoch":
            for i in range(len(self.dates)):
                stokes_i_fits = []
                stokes_q_fits = []
                stokes_u_fits = []
                for image in self.images[i, :].flatten():
                    if image.file_path != "":
                        stokes_i_fits.append(image.file_path)
                    if image.stokes_q_path != "":
                        stokes_q_fits.append(image.stokes_q_path)
                    if image.stokes_u_path != "":
                        stokes_u_fits.append(image.stokes_u_path)
                new_fits_i = (self.images.flatten()[0].model_save_dir + "mod_files_clean/" +
                              self.name + "_" + self.dates[i] + "_stacked.fits")
                if len(stokes_i_fits) != len(stokes_q_fits) or len(stokes_i_fits) != len(stokes_u_fits):
                    logger.warning("Polarization data not present or invalid, will only stack Stokes I!")
                    logger.info(f"Stacking images for {self.dates[i]}.")
                    stack_fits(fits_files=stokes_i_fits, output_file=new_fits_i)
                else:
                    logger.info(f"Stacking images for {self.dates[i]}.")
                    stack_fits(fits_files=stokes_i_fits, stokes_q_fits=stokes_q_fits, stokes_u_fits=stokes_u_fits,
                               output_file=new_fits_i)
                new_fits_files.append(new_fits_i)
        else:
            raise Exception("Please specify valid stacking mode ('all', 'freq', 'epoch')")
        #create new ImageData objects from new fits files:
        images=[]
        for file in new_fits_files:
            images.append(ImageData(file,noise_method=self.images.flatten()[0].noise_method,difmap_path=self.images.flatten()[0].difmap_path))
        #return new ImageCube
        return ImageCube(image_data_list=images,date_tolerance=self.date_tolerance,freq_tolerance=self.freq_tolerance,
                         new_import=False)
    def get_common_beam(self,mode="all",arg="common",ppe=100,tolerance=0.0001,plot_beams=False):
        """
        This function calculates the common beam from a selection of ImageData Objects within the ImageCube.
        Args:
            mode: Select mode ("all" -> one beam for all, "freq" -> gets common beam per frequency across epochs,
            "epoch" -> gets common beam per epoch across all frequencies)
            arg: Type of algorithm to use ("mean", "max", "median", "circ", "common")
            ppe: Points per Ellipse for "common" algorithm
            tolerance: Tolerance parameter for "common" algorithm
            plot_beams: Boolean to choose if a diagnostic plot of all beams and the common beam should be displayed
        Returns:
            [maj, min, pos]: List with new major and minor axis and position angle
        """
        if mode=="all":
            return get_common_beam(self.images_majs.flatten(), self.images_mins.flatten(), self.images_pas.flatten(), arg=arg, ppe=ppe, tolerance=tolerance, plot_beams=plot_beams)
        elif mode=="freq":
            beams=[]
            for freq in self.freqs:
                cube=self.slice(freq_lim=[freq*1e-9-1,freq*1e-9+1])
                beam=get_common_beam(cube.images_majs.flatten(), cube.images_mins.flatten(), cube.images_pas.flatten(), arg=arg, ppe=ppe, tolerance=tolerance, plot_beams=plot_beams)
                beams.append(beam)
            return beams
        elif mode=="epoch":
            beams=[]
            for epoch in self.mjds:
                cube=self.slice(epoch_lim=[epoch-1,epoch+1])
                beam=get_common_beam(cube.images_majs.flatten(), cube.images_mins.flatten(), cube.images_pas.flatten(), arg=arg, ppe=ppe, tolerance=tolerance, plot_beams=plot_beams)
                beams.append(beam)
            return beams
        else:
            raise Exception("Please specify valid mode ('all','freq','epoch')")
    def restore(self,bmaj=-1,bmin=-1,posa=-1,arg="common",mode="all", useDIFMAP=True,
                shift_x=0,shift_y=0,ppe=100,tolerance=0.0001,plot_beams=False):
        """
        This function allows to restore the ImageCube with a custom beam
        Args:
            bmaj: Beam major axis to use
            bmin: Beam minor axis to use
            posa: Beam position angle to use (in degrees)
            arg: Type of algorithm to use for common beam calculation ("mean", "max", "median", "circ", "common")
            mode: Select restore mode ("all" -> applies beam to all, "freq" -> restores common beam per frequency,
            "epoch" -> restores common beam per epoch)
            useDIFMAP: Choose whether to use DIFMAP for restoring
            shift_x: Shift in mas in x-direction (list or float)
            shift_y: Shift in mas in y-direction (list or float)
            ppe: Points per Ellipse for "common" algorithm
            tolerance: Tolerance parameter for "common" algorithm
            plot_beams: Boolean to choose if a diagnostic plot of all beams and the common beam should be displayed
        Returns:
            image_cube (ImageCube): new ImageCube object with restored images
        """
        # get beam(s)
        if bmaj==-1 and bmin==-1 and posa==-1:
            logger.info("Determining common beam...")
            beams=self.get_common_beam(mode=mode, arg=arg, ppe=ppe, tolerance=tolerance, plot_beams=plot_beams)
        else:
            if isinstance(bmaj,list) and isinstance(bmin,list) and isinstance(posa,list):
                beams=[]
                for i in range(len(bmaj)):
                    beams.append([bmaj[i],bmin[i],posa[i]])
            else:
                beams=[bmaj,bmin,posa]
                mode="all"
        #initialize empty array
        images = []
        logger.info("Restoring images")
        if mode=="all":
            for ind, image in enumerate(tqdm(self.images.flatten(),desc="Processing")):
                if isinstance(image, ImageData):
                    npix=len(image.X)*2
                    pixel_size=image.degpp*image.scale
                    new_image=image.restore(beams[0],beams[1],beams[2],shift_x=shift_x,shift_y=shift_y,npix=npix,pixel_size=pixel_size,useDIFMAP=useDIFMAP)
                    images.append(new_image)
        elif mode=="freq":
            for i in range(len(self.freqs)):
                #check if parameters were input per frequency or for all frequencies
                shift_x_i = shift_x[i] if isinstance(shift_x,list) else shift_x
                shift_y_i = shift_y[i] if isinstance(shift_y,list) else shift_y
                image_select=self.images[:,i].flatten()
                for ind2,image in enumerate(tqdm(image_select,desc="Processing")):
                    if isinstance(image, ImageData):
                        npix = len(image.X) * 2
                        pixel_size = image.degpp * image.scale
                        images.append(image.restore(beams[i][0],beams[i][1],beams[i][2],shift_x=shift_x_i,shift_y=shift_y_i,npix=npix,
                                            pixel_size=pixel_size,useDIFMAP=useDIFMAP))
        elif mode=="epoch":
            for i in tqdm(range(len(self.dates)),desc="Processing"):
                # check if parameters were input per frequency or for all frequencies
                shift_x_i = shift_x[i] if isinstance(shift_x, list) else shift_x
                shift_y_i = shift_y[i] if isinstance(shift_y, list) else shift_y
                image_select=self.images[i,:].flatten()
                for ind2, image in enumerate(image_select):
                    if isinstance(image, ImageData):
                        npix = len(image.X) * 2
                        pixel_size = image.degpp * image.scale
                        images.append(image.restore(beams[i][0],beams[i][1],beams[i][2],shift_x=shift_x_i,shift_y=shift_y_i,npix=npix,
                                            pixel_size=pixel_size,useDIFMAP=useDIFMAP))
        else:
            raise Exception("Please specify a restore shift mode ('all', 'freq', 'epoch')")
        logger.info(f"Image modifications completed.")
        return ImageCube(image_data_list=images,date_tolerance=self.date_tolerance,freq_tolerance=self.freq_tolerance,
                         new_import=False)
    #This function generates lightcurve-like plots to plot the evolution of flux, lin_pol etc. vs. time
    def plot_evolution(self, value="flux",freq="",show=True, savefig="",
                       colors=plot_colors, #default colors
                       markers=plot_markers, #default markers
                       labels=[""],
                       linestyles=plot_linestyles,
                       evpa_pol_plot=True,
                       evpa_len=[200],
                       fig="",
                       ax=""):
        #TODO also make ridgeline plot over several epochs possible
        if freq == "":
            freq = self.freqs
        elif isinstance(freq,(float,int)):
            freq = [freq]
        elif not isinstance(freq, list):
            raise Exception("Invalid input for 'freq'.")
        if (value=="evpa" or value=="evpa_average") and evpa_pol_plot:
            plot = EvolutionPlot(pol_plot=True,fig=fig,ax=ax)
        else:
            plot = EvolutionPlot(xlabel="MJD [days]",fig=fig,ax=ax)
        for i,f in enumerate(freq):
            values = []
            mjds = []
            evpas = []
            ind_f=closest_index(freq,f)
            for image in self.images[:,ind_f].flatten():
                mjds.append(image.mjd)
                if value=="flux":
                    values.append(image.integrated_flux_clean)
                    ylabel="Flux Density [Jy/beam]"
                elif value=="linpol" or value=="lin_pol":
                    values.append(image.integrated_pol_flux_clean)
                    ylabel = "Linear Polarized Flux [Jy/beam]"
                elif value=="frac_pol" or value=="fracpol":
                    values.append(image.integrated_pol_flux_clean/image.integrated_flux_clean*100)
                    ylabel = "Fractional Polarization [%]"
                elif value=="evpa" or value=="evpa_average":
                    values.append(image.evpa_average/np.pi*180)
                    ylabel = "Electric Vector Position Angle [°]"
                elif value=="noise":
                    values.append(image.noise)
                    ylabel = "Image Noise [Jy/beam]"
                elif value=="pol_noise" or value=="polnoise":
                    values.append(image.pol_noise)
                    ylabel = "Polarization Noise [Jy/beam]"
                elif value=="flux+evpa":
                    values.append(image.integrated_flux_clean)
                    evpas.append(image.evpa_average/np.pi*180)
                    ylabel = "Flux Density [Jy/beam]"
                elif value=="linpol+evpa" or "lin_pol+evpa":
                    values.append(image.integrated_pol_flux_clean)
                    evpas.append(image.evpa_average/np.pi*180)
                    ylabel = "Linear Polarized Flux [Jy/beam]"
                elif value=="fracpol+evpa" or "frac_pol+evpa":
                    values.append(image.integrated_pol_flux_clean/image.integrated_flux_clean*100)
                    evpas.append(image.evpa_average/np.pi*180)
                    ylabel = "Fractional Polarization [%]"
                else:
                    raise Exception("Please specify valid plot mode")
            if labels==[""]:
                label="{:.1f}".format(f*1e-9)+" GHz"
            else:
                label=labels[i%len(labels)]
            if (value=="evpa" or value=="evpa_average") and evpa_pol_plot:
                plot.plotEVPAevolution(np.array(mjds),np.array(values),c=colors[i%len(colors)],marker=markers[i%len(markers)],
                                       label=label,linestyle=linestyles[i%len(linestyles)])
            elif (value=="flux+evpa" or value=="linpol+evpa" or value=="lin_pol+evpa" or value=="fracpol+evpa" or value=="frac_pol+evpa"):
                plot.plotEvolutionWithEVPA(np.array(mjds),np.array(values),np.array(evpas),c=colors[i%len(colors)],marker=markers[i%len(markers)],
                                           label=label,linestyle=linestyles[i%len(linestyles)],evpa_len=evpa_len[i%len(evpa_len)])
                plt.ylabel(ylabel)
            else:
                plot.plotEvolution(np.array(mjds),np.array(values),c=colors[i % len(colors)],marker=markers[i % len(markers)],
                               label=label,linestyle=linestyles[i % len(linestyles)])
                plt.ylabel(ylabel)
        plt.legend()
        plt.tight_layout()
        if savefig!="":
            plt.savefig(savefig,dpi=300, bbox_inches='tight', transparent=False)
        if show:
            plt.show()
        return plot
    def plot(self, show=True, savefig="",**kwargs):
        defaults = {
            "swap_axis": False,
            "stokes_i_sigma_cut": 3,
            "plot_mode": "stokes_i",
            "im_colormap": False,
            "contour": True,
            "contour_color": 'grey',
            "contour_cmap": None,
            "contour_alpha": 1,
            "contour_width": 0.5,
            "im_color": '',
            "do_colorbar": False,
            "plot_ridgeline": False,
            "ridgeline_color": "red",
            "plot_counter_ridgeline": False,
            "counter_ridgeline_color": "red",
            "plot_line" : "",
            "line_color" : "black",
            "line_width" : 2,
            "plot_polar": False,
            "plot_beam": True,
            "beam_color": "grey",
            "plot_model": False,
            "component_color": "black",
            "plot_comp_ids": False,
            "plot_comp_evpas": False,
            "plot_clean": False,
            "plot_mask": False,
            "xlim": [],
            "ylim": [],
            "levs": "",
            "levs1": "",
            "levs_linpol": "",
            "levs1_linpol": "",
            "stokes_i_vmax": "",
            "fracpol_vmax": "",
            "linpol_vmax": "",
            "colorbar_loc": "right",
            "shared_colormap": "individual",  # options are 'freq', 'epoch', 'all','individual'
            "shared_colorbar": False,  # if true, will plot a shared colorbar according to share_colormap setting
            "shared_sigma": "max",  # select which common sigma to use options: 'max','min'
            "shared_colorbar_label": "",  # choose custom colorbar label
            "shared_colorbar_labelsize" : 10,  # choose labelsize of custom colorbar
            "plot_evpa": False,
            "evpa_border_color": "",
            "evpa_border_width": 0.5,
            "evpa_width": 1.5,
            "evpa_len": -1,
            "lin_pol_sigma_cut": 3,
            "evpa_distance": -1,
            "fractional_evpa_distance": 0.1,
            "rotate_evpa": 0,
            "evpa_color": "white",
            "title": " ",
            "background_color": "white",
            "figsize": "",
            "font_size_axis_title": 8,
            "font_size_axis_tick": 6,
            "adjust_comp_size_to_res_lim": True,
            "rcparams": {}
        }
        params = {**defaults, **kwargs}
        plot=MultiFitsImage(self,**params)
        if savefig!="":
            plot.export(savefig)
        if show:
            plt.show()
        return plot
    def regrid(self,npix="", pixel_size="",mode="all",useDIFMAP=True,mask_outside=False):
        # initialize empty array
        images = []
        logger.info("Regridding images")
        if npix == "" or pixel_size == "":
            logger.info("Determining smallest pixel size and largest FoV from images for regridding")
            FoVs = []
            npixs = []
            pixel_sizes = []
            for ind, image in enumerate(tqdm(self.images.flatten(),desc="Processing")):
                npix = len(image.X)
                npixs.append(npix)
                pixel_size = image.degpp*image.scale
                pixel_sizes.append(pixel_size)
                FoVs.append(npix*pixel_size)
            # choose the largest FoV and smallest pixel size
            FoV_choose = np.nanmax(FoVs)
            pixel_size_choose = np.nanmin(pixel_sizes)
            npix_choose = FoV_choose/pixel_size_choose
            # determine next-largest n_pix that is a power of 2
            npixs_ok = [2**x for x in range(14)]    # maximum 16k pixels
            diff = 1E6
            for i, npix in enumerate(npixs_ok):
                if npix > npix_choose:
                    npix_choose = npix
                    break
            FoV_choose = npix_choose*pixel_size_choose
            npix = npix_choose
            pixel_size = pixel_size_choose
        if mode=="all":
            for image in tqdm(self.images.flatten(),desc="Processing"):
                if isinstance(image, ImageData):
                    new_image=image.regrid(npix=npix,pixel_size=pixel_size,useDIFMAP=useDIFMAP,mask_outside=mask_outside)
                    images.append(new_image)
        elif mode=="freq":
            for i in range(len(self.freqs)):
                # check if parameters were input per frequency or for all frequencies
                npix_i = npix[i] if isinstance(npix, list) else npix
                pixel_size_i = pixel_size[i] if isinstance(pixel_size, list) else pixel_size
                image_select = self.images[:, i]
                for image in tqdm(image_select,desc="Processing"):
                    if isinstance(image, ImageData):
                        images.append(image.regrid(npix=npix_i, pixel_size=pixel_size_i,useDIFMAP=useDIFMAP, mask_outside=mask_outside))
        elif mode=="epoch":
            for i in tqdm(range(len(self.dates)),desc="Processing"):
                # check if parameters were input per frequency or for all frequencies
                npix_i = npix[i] if isinstance(npix, list) else npix
                pixel_size_i = pixel_size[i] if isinstance(pixel_size, list) else pixel_size
                image_select = self.images[i, :]
                for image in image_select:
                    if isinstance(image, ImageData):
                        images.append(image.regrid(npix=npix_i, pixel_size=pixel_size_i, useDIFMAP=useDIFMAP, mask_outside=mask_outside))
        else:
            raise Exception("Please specify valid regrid mode ('all', 'epoch', 'freq')!")
        return ImageCube(image_data_list=images,date_tolerance=self.date_tolerance,freq_tolerance=self.freq_tolerance,
                         new_import=False)
    def shift(self, mode="all", shift_x=0, shift_y=0,useDIFMAP=True):
        # initialize empty array
        images = []
        if mode == "all":
            logger.info("Shifting images:")
            for image in tqdm(self.images.flatten(), desc="Processing"):
                if isinstance(image, ImageData):
                    new_image = image.shift(shift_x=shift_x,shift_y=shift_y,
                                            useDIFMAP=useDIFMAP)
                    images.append(new_image)
        elif mode == "freq":
            for i in range(len(self.freqs)):
                # check if parameters were input per frequency or for all frequencies
                shift_x_i = shift_x[i] if isinstance(shift_x, list) else shift_x
                shift_y_i = shift_y[i] if isinstance(shift_y, list) else shift_y
                image_select = self.images[:, i]
                for image in image_select:
                    if isinstance(image, ImageData):
                        images.append(
                            image.shift(shift_x=shift_x_i, shift_y=shift_y_i,
                                        useDIFMAP=useDIFMAP))
        elif mode == "epoch":
            for i in range(len(self.dates)):
                # check if parameters were input per frequency or for all frequencies
                shift_x_i = shift_x[i] if isinstance(shift_x, list) else shift_x
                shift_y_i = shift_y[i] if isinstance(shift_y, list) else shift_y
                image_select = self.images[i, :]
                for image in image_select:
                    if isinstance(image, ImageData):
                        images.append(
                            image.shift(shift_x=shift_x_i, shift_y=shift_y_i,
                                       useDIFMAP=useDIFMAP))
        else:
            raise Exception("Please specify valid shift mode ('all', 'epoch', 'freq')!")
        return ImageCube(image_data_list=images,date_tolerance=self.date_tolerance,freq_tolerance=self.freq_tolerance,
                         new_import=False)
    def align(self,mode="all",beam_maj=-1,beam_min=-1,beam_posa=-1,npix="",pixel_size="",
              ref_freq="",ref_epoch="",beam_arg="common",masked_shift=True,method="cross_correlation",useDIFMAP=True,ref_image="",ppe=100, tolerance=0.0001,remove_components=[]):
        # get beam(s)
        if beam_maj == -1 and beam_min == -1 and beam_posa == -1:
            beams = self.get_common_beam(mode=mode, arg=beam_arg, ppe=ppe, tolerance=tolerance, plot_beams=False)
        else:
            if isinstance(beam_maj, list) and isinstance(beam_min, list) and isinstance(beam_posa, list):
                beams = []
                for i in range(len(beam_maj)):
                    beams.append([beam_maj[i], beam_min[i], beam_posa[i]])
            else:
                beams = [beam_maj, beam_min, beam_posa]
                mode="all"
        images_new=[]
        if mode=="all":
            images=self.images.flatten()
            if ref_image=="":
                if npix=="" or pixel_size=="":
                    #find largest FOV to use for regridding
                    npixs=[]
                    pixel_sizes=[]
                    for image in images:
                        npixs=np.append(npixs,len(image.X))
                        pixel_sizes=np.append(pixel_sizes,image.degpp*image.scale)
                    fovs=npixs*pixel_sizes
                    npix=round(npixs[np.argmax(fovs)])
                    pixel_size=pixel_sizes[np.argmax(fovs)]
                else:
                    #will use custom specified npix and pixel_size
                    pass
            else:
                #use reference image
                npix=len(ref_image.X)
                pixel_size=ref_image.degpp*ref_image.scale
                beams=[ref_image.beam_maj,ref_image.beam_min,ref_image.beam_posa]
            #regrid images
            im_cube=self.regrid(npix,pixel_size,mode=mode,useDIFMAP=useDIFMAP)
            #restore images
            im_cube=im_cube.restore(beams[0],beams[1],beams[2],mode=mode,useDIFMAP=useDIFMAP)
            images=im_cube.images.flatten()
            #remove components from image before aligning
            if len(remove_components)>0:
                for j in range(len(images)):
                    images[j]=images[j].remove_component(remove_components)
            #choose reference_image (this is pretty random)
            if ref_image=="":
                ref_image=images[0]
            # align images
            for image in images:
                images_new.append(image.align(ref_image,masked_shift=masked_shift,method=method,useDIFMAP=useDIFMAP))
        elif mode=="freq":
            for i in range(len(self.freqs)):
                images=self.images[:,i].flatten()
                ref_image_i = ref_image[i] if isinstance(ref_image,list) else ref_image
                npix_i = npix[i] if isinstance(npix,list) else npix
                pixel_size_i = pixel_size[i] if isinstance(npix, list) else pixel_size
                if ref_image_i=="":
                    beam_i=beams[i]
                    if npix_i=="" or pixel_size_i=="":
                        #find largest FOV to use for regridding
                        npixs=[]
                        pixel_sizes=[]
                        for image in images:
                            npixs=np.append(npixs,len(image.X))
                            pixel_sizes=np.append(pixel_sizes,image.degpp*image.scale)
                        fovs=npixs*pixel_sizes
                        npix_i=round(npixs[np.argmax(fovs)])
                        pixel_size_i=pixel_sizes[np.argmax(fovs)]
                    else:
                        #will use custom specified npix and pixel_size
                        pass
                else:
                    #use reference image
                    npix_i=len(ref_image_i.X)
                    pixel_size_i=ref_image_i.degpp*ref_image.scale
                    beam_i=[ref_image_i.beam_maj,ref_image.beam_min,ref_image.beam_posa]
                #regrid images
                im_cube=ImageCube(images)
                im_cube=im_cube.regrid(npix_i,pixel_size_i,mode="all",useDIFMAP=useDIFMAP)
                #restore images
                im_cube=im_cube.restore(beam_i[0],beam_i[1],beam_i[2],mode="all",useDIFMAP=useDIFMAP)
                images=im_cube.images.flatten()
                #choose reference_image (this is pretty random)
                if ref_image_i=="":
                    if ref_epoch=="":
                        ref_image_i=images[0]
                    else:
                        j = closest_index(self.mjds,Time(ref_epoch).mjd)
                        ref_image_i=images[j]
                #align images
                for image in images:
                    images_new.append(image.align(ref_image_i,masked_shift=True,method=method,useDIFMAP=useDIFMAP))
        elif mode=="epoch":
            for i in range(len(self.dates)):
                images = self.images[i, :].flatten()
                ref_image_i = ref_image[i] if isinstance(ref_image, list) else ref_image
                npix_i = npix[i] if isinstance(npix, list) else npix
                pixel_size_i = pixel_size[i] if isinstance(npix, list) else pixel_size
                if ref_image_i == "":
                    beam_i = beams[i]
                    if npix_i == "" or pixel_size_i == "":
                        # find largest FOV to use for regridding
                        npixs = []
                        pixel_sizes = []
                        for image in images:
                            npixs = np.append(npixs, len(image.X))
                            pixel_sizes = np.append(pixel_sizes, image.degpp * image.scale)
                        fovs = npixs * pixel_sizes
                        npix_i = round(npixs[np.argmax(fovs)])
                        pixel_size_i = pixel_sizes[np.argmax(fovs)]
                    else:
                        # will use custom specified npix and pixel_size
                        pass
                else:
                    # use reference image
                    npix_i = len(ref_image_i.X)
                    pixel_size_i = ref_image_i.degpp * ref_image.scale
                    beam_i = [ref_image_i.beam_maj, ref_image.beam_min, ref_image.beam_posa]
                # regrid images
                im_cube = ImageCube(images)
                im_cube = im_cube.regrid(npix_i, pixel_size_i, mode="all", useDIFMAP=useDIFMAP)
                # restore images
                im_cube = im_cube.restore(beam_i[0], beam_i[1], beam_i[2], mode="all", useDIFMAP=useDIFMAP)
                images = im_cube.images.flatten()
                # choose reference_image (this is pretty random)
                if ref_image_i == "":
                    if ref_freq == "":
                        ref_image_i = images[-1]
                    else:
                        j = closest_index(self.freqs, freq*1e9)
                        ref_image_i = images[j]
                # align images
                for image in images:
                    images_new.append(image.align(ref_image_i, masked_shift=True, method=method, useDIFMAP=useDIFMAP))
        else:
            raise Exception("Please use a valid align mode ('all', 'epoch', 'freq').")
        return ImageCube(image_data_list=images_new,date_tolerance=self.date_tolerance,freq_tolerance=self.freq_tolerance,
                         new_import=False)
    def slice(self,epoch_lim="",freq_lim=""):
        """
        This method allows you to get a slice of the given ImageCube
        Args:
            epoch_lim: [start_epoch,end_epoch] Provide start and end epoch or MJD
            freq_lim: [start_freq, end_freq] Provide start and end frequency in GHz
        Returns:
            image_cube (ImageCube): new ImageCube with cut applied
        """
        if epoch_lim!="":
            if isinstance(epoch_lim[1], str):
                mjd_max=Time(epoch_lim[0]).mjd
            elif isinstance(epoch_lim[1], float):
                mjd_max=epoch_lim[1]
            elif isinstance(epoch_lim[1], int):
                mjd_max=epoch_lim[1]
            else:
                raise Exception("Please enter valid epoch_lim!")
            if isinstance(epoch_lim[0], str):
                mjd_min=Time(epoch_lim[0]).mjd
            elif isinstance(epoch_lim[0], float):
                mjd_min=epoch_lim[0]
            elif isinstance(epoch_lim[0], int):
                mjd_min=epoch_lim[0]
            else:
                raise Exception("Please enter valid epoch_lim!")
        else:
            mjd_min=0
            mjd_max=np.inf
        try:
            freq_min=freq_lim[0]*1e9
            freq_max=freq_lim[1]*1e9
        except:
            if freq_lim!="":
                raise Exception("Please enter valid freq_lim!")
            else:
                freq_min=0
                freq_max=np.inf
        freqs=self.images_freq.flatten()
        mjds=self.images_mjd.flatten()
        images=self.images.flatten()
        inds=np.where(np.logical_and(np.logical_and(freqs>=freq_min,freqs<=freq_max),
                      np.logical_and(mjds>=mjd_min,mjds<=mjd_max)))
        return ImageCube(image_data_list=images[inds],date_tolerance=self.date_tolerance,freq_tolerance=self.freq_tolerance,
                         new_import=False)
    def concatenate(self,ImageCube2):
        images=np.append(self.images.flatten(),ImageCube2.images.flatten())
        return ImageCube(image_data_list=images,date_tolerance=self.date_tolerance,freq_tolerance=self.freq_tolerance,
                         new_import=False)
    def removeFreq(self, freq="",window=1.):
        """
        This method allows you to remove a particular frequency.
        Args:
            freq: List of frequencies to remove
            window: Window in GHz to consider around center freq
        Returns:
            image_cube (ImageCube): new ImageCube
        """
        window = float(window)
        cubes=[]
        if freq!="":
            if isinstance(freq, float) or isinstance(freq, int):
                freq=[freq]
            if isinstance(freq,list):
                freq=np.sort(freq)
                for ind,frequency in enumerate(freq):
                    if ind==0:
                        cube=self.slice(freq_lim=[0,frequency-window])
                    else:
                        cube=self.slice(freq_lim=[freq[ind-1]+window,frequency-window])
                    cubes.append(cube)
                cubes.append(self.slice(freq_lim=[freq[-1] + window, np.inf]))
            start_cube=cubes[0]
            for i in range(1,len(cubes)):
                start_cube=start_cube.concatenate(cubes[i])
        return start_cube
    def removeEpoch(self, epoch="",window=1.):
        """
        This method allows you to remove a particular epoch.
        Args:
            epoch: List of epochs to remove
            window: Days to consider around the epoch
        Returns:
            image_cube (ImageCube): new ImageCube
        """
        window=float(window)
        cubes = []
        if epoch != "":
            if isinstance(epoch, float) or isinstance(epoch, int):
                epoch = [epoch]
            if isinstance(epoch, str):
                epoch = [epoch]
            if isinstance(epoch, list):
                epoch = np.sort(epoch)
                for ind, ep in enumerate(epoch):
                    if isinstance(ep, str):
                        ep=Time(ep).mjd
                        epoch[ind]=ep
                    if ind == 0:
                        cube = self.slice(epoch_lim=[0, ep - window])
                    else:
                        cube = self.slice(epoch_lim=[epoch[ind - 1] + window, ep - window])
                    cubes.append(cube)
                cubes.append(self.slice(epoch_lim=[float(epoch[-1]) + window, np.inf]))
            start_cube = cubes[0]
            for i in range(1, len(cubes)):
                start_cube = start_cube.concatenate(cubes[i])
        return start_cube
    def get_spectral_index_map(self,freq1,freq2,ref_image="",epoch="",spix_vmin=-3,spix_vmax=5,sigma_lim=3,plot=False):
        #TODO implement fitting spix across more than two frequencies
        #TODO basic check if images are aligned and same pixels if not, align automatically
        if isinstance(epoch, list):
            epochs=epoch
        elif epoch=="":
            epochs=self.dates
        else:
            epochs=[epoch]
        spec_ind_maps=[]
        for epoch in epochs:
            i=closest_index(self.mjds,Time(epoch).mjd)
            images=self.images[i,:].flatten()
            #find images to use
            image1=images[closest_index(self.freqs,freq1*1e9)]
            image2=images[closest_index(self.freqs,freq2*1e9)]
            #filter according to sigma cut
            spix1=image1.Z*(image1.Z>image1.noise*sigma_lim)*(image2.Z>image2.noise*sigma_lim)
            spix2=image2.Z*(image2.Z>image2.noise*sigma_lim)*(image1.Z>image1.noise*sigma_lim)
            spix1[spix1==0] = image1.noise*sigma_lim
            spix2[spix2==0] = image2.noise*sigma_lim
            a = np.log10(spix2/spix1)/np.log10(freq2/freq1)
            logger.info('Spectral index max(alpha)={} - min(alpha)={}\nCutoff {}<alpha<{}'.format(ma.amax(a),ma.amin(a),spix_vmin,spix_vmax))
            a[a<spix_vmin]=spix_vmin
            a[a>spix_vmax]=spix_vmax
            a[spix2==image2.noise*sigma_lim] = spix_vmin
            # TODO maybe it makes sense to introduce a new SpixData Class here? The current solution is a bit hacky, but it works
            if ref_image=="":
                ref_image=image2
            image_copy=ref_image.copy()
            image_copy.spix=a
            image_copy.is_spix=True
            image_copy.spix_vmin=spix_vmin
            image_copy.spix_vmax=spix_vmax
            if plot:
                image_copy.plot(plot_mode="spix",im_colormap=True,do_colorbar=True)
            spec_ind_maps.append(image_copy)
        return ImageCube(image_data_list=spec_ind_maps,date_tolerance=self.date_tolerance,freq_tolerance=self.freq_tolerance,
                         new_import=False)
    def get_images(self,freq="",epoch=""):
        if isinstance(epoch,str) and epoch!="":
            mjd=Time(epoch).mjd
        elif isinstance(epoch,float) or isinstance(epoch,int):
            mjd=epoch
        if epoch=="" and freq=="":
            return self.images
        elif epoch=="":
            freq_ind = closest_index(self.freqs, freq * 1e9)
            return self.images[:,freq_ind]
        elif freq=="":
            time_ind = closest_index(self.mjds,mjd)
            return self.images[time_ind,:]
        else:
            time_ind=closest_index(self.mjds,mjd)
            freq_ind=closest_index(self.freqs,freq*1e9)
            return self.images[time_ind,freq_ind]
    def get_rm_map(self,freq1,freq2,epoch="",sigma_lim=3,rm_vmin="",rm_vmax="",sigma_lim_pol=5,plot=False):
        #TODO get RM map across more than 2 frequencies by fitting
        # TODO basic check if images are aligned and same pixels if not, align automatically
        if isinstance(epoch, list):
            epochs=epoch
        elif epoch=="":
            epochs=self.dates
        else:
            epochs=[epoch]
        rm_maps=[]
        for epoch in epochs:
            i=closest_index(self.mjds,Time(epoch).mjd)
            images=self.images[i,:].flatten()
            #find images to use
            image1=images[closest_index(self.freqs,freq1*1e9)]
            image2=images[closest_index(self.freqs,freq2*1e9)]
            # filter according to sigma cut
            evpa1 = (image1.evpa * (image1.Z > image1.noise * sigma_lim) * (image1.lin_pol > image1.pol_noise * sigma_lim_pol)
                     *(image2.Z > image2.noise * sigma_lim) * (image2.lin_pol > image2.pol_noise * sigma_lim_pol))
            evpa2 = (image2.evpa * (image2.Z > image2.noise * sigma_lim) * (image2.lin_pol > image2.pol_noise * sigma_lim_pol)
                     * (image1.Z > image1.noise * sigma_lim) * (image1.lin_pol > image1.pol_noise * sigma_lim_pol))
            evpa1[evpa1 == 0] = 0
            evpa2[evpa2 == 0] = 1000 #for masked areas will create incredibly high RM that will be filtered later
            #calculate wavelengths
            lam1=c.si.value/image1.freq
            lam2=c.si.value/image2.freq
            evpa_diff=evpa2-evpa1
            # calculate rotation measure
            rm=evpa_diff/(lam2**2-lam1**2)
            #calculate intrinsic EVPA
            evpa0=(evpa1*lam2**2-evpa2*lam1**2)/(lam2**2-lam1**2)
            # TODO maybe it makes sense to introduce a new RMData Class here? The current solution is a bit hacky, but it works
            image_copy = image2.copy()
            image_copy.rm = rm #write rotation measure to image
            image_copy.evpa = evpa0 #write intrinsic evpa to evpa
            image_copy.is_rm = True
            image_copy.rm_vmin=rm_vmin
            image_copy.rm_vmax=rm_vmax
            if plot:
                image_copy.plot(plot_mode="rm",im_colormap=True,do_colorbar=True)
            rm_maps.append(image_copy)
        return ImageCube(image_data_list=rm_maps,date_tolerance=self.date_tolerance,freq_tolerance=self.freq_tolerance,
                         new_import=False)
    def get_turnover_map(self,epoch="",ref_image="",sigma_lim=10,max_feval=1000000,alphat=2.5,specific_pixel=(-1,-1),limit_freq=True):
        #Largely imported from Luca Ricci's Turnover frequency code
        #TODO basic error handling to check if the files are aligned and regridded and restored.
        func_turn_fixed= partial(func_turn, alphat=alphat)
        if isinstance(epoch, list):
            epochs=epoch
        elif epoch=="":
            epochs=self.dates
        else:
            epochs=[epoch]
        frequencies=np.array(self.freqs)*1e-9 #Frequencies in GHz
        final_images=[]
        for epoch in epochs:
            i = closest_index(self.mjds, Time(epoch).mjd)
            images = self.images[i, :].flatten()
            #initialize result arrays
            turnover = np.zeros_like(images[0].Z)
            turnover_flux = np.zeros_like(images[0].Z)
            chi_square = np.zeros_like(images[0].Z)
            error_map = np.zeros_like(images[0].Z)
            lowest_freq = frequencies[0]
            highest_freq = frequencies[-1]
            for i in range(len(images[0].Z)):
                for j in range(len(images[0].Z[0])):
                    brightness = []
                    err_brightness = []
                    for image in images:
                        if image.Z[i,j] > image.noise * sigma_lim:
                            brightness.append(image.Z[i,j])
                            err_brightness.append(image.Z[i,j]*image.error)
                    if len(brightness) == len(images):
                        try:
                            popt, pcov = curve_fit(func_turn_fixed, frequencies, brightness, sigma=err_brightness,
                                                   maxfev=max_feval)
                            perr = np.sqrt(np.diag(pcov))
                            x_vals = np.linspace(lowest_freq,highest_freq,1000)
                            y_vals = func_turn_fixed(x_vals, *popt)
                            peak_idx = np.argmax(y_vals)
                            turnover_freq = x_vals[peak_idx]
                            peak_brightness = y_vals[peak_idx]
                            if (lowest_freq +1 <= turnover_freq <= highest_freq -1) or not limit_freq:
                                turnover[i,j] = turnover_freq
                                turnover_flux[i,j] = peak_brightness
                                # Calculate error on turnover frequency
                                popt_plus = popt + perr  # Parameters with added errors
                                popt_minus = popt - perr  # Parameters with subtracted errors
                                # Perturbed turnover frequencies
                                y_vals_plus = func_turn_fixed(x_vals, *popt_plus)
                                y_vals_minus = func_turn_fixed(x_vals, *popt_minus)
                                turnover_freq_plus = x_vals[np.argmax(y_vals_plus)]
                                turnover_freq_minus = x_vals[np.argmax(y_vals_minus)]
                                # Error as average absolute difference
                                error_map[i, j] = 0.5 * (abs(turnover_freq_plus - turnover_freq) + abs(
                                    turnover_freq_minus - turnover_freq))
                            else:
                                turnover[i,j] = 0
                            chi_square[i,j] = np.sum(((np.array(brightness) - func_turn_fixed(np.array(frequencies), *popt)) / np.array(err_brightness))**2)
                            # Plot specific pixel
                            if (i, j) == specific_pixel:
                                fitted_func = func_turn_fixed(np.array(frequencies), *popt)
                                plot_pixel_fit(frequencies, brightness, err_brightness, fitted_func, specific_pixel,
                                               popt, turnover_freq)
                        except:
                            continue
            # TODO maybe it makes sense to introduce a new TurnoverData Class here? The current solution is a bit hacky, but it works
            if ref_image=="":
                image_copy = images[-1].copy()
            else:
                image_copy=ref_image
            image_copy.is_turnover = True
            image_copy.turnover = turnover
            image_copy.turnover_flux = turnover_flux
            image_copy.turnover_error = error_map
            image_copy.turnover_chi_sq = chi_square
            final_images.append(image_copy)
        return ImageCube(image_data_list=final_images,date_tolerance=self.date_tolerance,freq_tolerance=self.freq_tolerance,
                         new_import=False)
    def rotate(self,angle,mode="all",useDIFMAP=True):
        images = []
        if mode == "all":
            for image in self.images.flatten():
                if isinstance(image, ImageData):
                    new_image = image.rotate(angle,useDIFMAP=useDIFMAP)
                    images.append(new_image)
        elif mode == "freq":
            for i in range(len(self.freqs)):
                # check if parameters were input per frequency or for all frequencies
                angle_i = angle[i] if isinstance(angle, list) else angle
                image_select = self.images[:, i]
                for image in image_select:
                    if isinstance(image, ImageData):
                        new_image=image.rotate(angle_i,useDIFMAP=useDIFMAP)
                        images.append(new_image)
        elif mode == "epoch":
            for i in range(len(self.dates)):
                # check if parameters were input per frequency or for all frequencies
                angle_i = angle[i] if isinstance(angle, list) else angle
                image_select = self.images[i, :]
                for image in image_select:
                    if isinstance(image, ImageData):
                        new_image = image.rotate(angle_i, useDIFMAP=useDIFMAP)
                        images.append(new_image)
        else:
            raise Exception("Please specify valid rotate mode ('all', 'epoch', 'freq')!")
        return ImageCube(image_data_list=images,date_tolerance=self.date_tolerance,freq_tolerance=self.freq_tolerance,
                         new_import=False)
    def center(self,mode="stokes_i",useDIFMAP=True):
        images=[]
        logger.info("Centering images:")
        for image in tqdm(self.images.flatten(), desc="Processing"):
            if isinstance(image, ImageData):
                images.append(image.center(mode=mode,useDIFMAP=useDIFMAP))
        return ImageCube(image_data_list=images,date_tolerance=self.date_tolerance,freq_tolerance=self.freq_tolerance,
                         new_import=False)
    def get_ridgeline(self,mode="all",**kwargs):
        """
        Function to call get_ridgeline for all images in the ImageCube to fit a ridgeline for all images.
        Args:
            mode (str): Choose apply mode ('all', 'freq', 'epoch', 'individual'), will apply independent mask for 'all', per 'epoch' or per 'frequency'
            **kwargs: Options  for get_ridgeline() on ImageCube, need to passed as individual values (mode='all') or lists (mode='frequency' or 'epoch) or 2d-arrays (mode='individual')
        """
        kwargs=self.format_kwargs(kwargs,mode)
        for i in range(len(self.images)):
            for j in range(len(self.images[0])):
                single_kwargs={key: value[i][j] for key, value in kwargs.items()}
                self.images[i][j].get_ridgeline(**single_kwargs)
    def get_core_comp_collection(self):
        for cc in self.comp_collections:
            if cc.components[0].is_core:
                return cc
        raise Exception(f"No component collection with id {comp_id} found.")
    def get_comp_collection(self,comp_id):
        for cc in self.comp_collections:
            if np.any(cc.ids.flatten()==comp_id):
                return cc
        raise Exception(f"No component collection with id {comp_id} found.")
    def get_comp_collections(self,date_tolerance=1,freq_tolerance=1):
        #find available component ids
        comp_ids=[]
        for image in self.images.flatten():
            if isinstance(image, ImageData):
                for comp in image.components:
                    comp_ids.append(comp.component_number)
        comp_ids=np.unique(comp_ids)
        #create a ComponentCollection for every component ID
        component_collections=[]
        for id in comp_ids:
            comps=[]
            for image in self.images.flatten():
                if isinstance(image, ImageData):
                    for comp in image.components:
                        if comp.component_number==id and comp.component_number!=-1:
                            comps.append(comp)
            if id!=-1:
                component_collections.append(ComponentCollection(components=comps,name="Component "+str(id),date_tolerance=date_tolerance,freq_tolerance=freq_tolerance))
        return component_collections
    def import_component_association(self,file):
        """
        Import component associations from a component_info.csv file
        Args:
            file (str): Filepath to the .csv file with component info
        """
        logger.info(f"Importing component associations from {file}.")
        df=pd.read_csv(file)
        for i in range(len(self.images)):
            for j in range(len(self.images[0])):
                image = self.images[i, j]
                if isinstance(image,ImageData):
                    assigned_ids=[]
                    for k, comp in enumerate(image.components):
                        x = comp.x
                        y = comp.y
                        flux = comp.flux
                        mjd = comp.mjd
                        freq = comp.freq
                        #first filter the df for the specific date and frequency
                        df_filtered=df[abs(df["mjd"]-mjd)<3]
                        df_filtered=df_filtered[abs(df_filtered["freq"]-freq)<1e9]
                        # Find the closest component in the dataframe
                        df_filtered['distance'] = np.sqrt(
                            (df_filtered['x'] - x) ** 2 +
                            (df_filtered['y'] - y) ** 2
                        )
                        if len(df_filtered['distance'])>0:
                            closest_row = df_filtered.loc[df_filtered['distance'].idxmin()]
                            # Assign new component number and is_core with type casting
                            new_comp_id = int(closest_row["component_number"])
                        else:
                            logger.warning(f"Could not find component with flux {flux*1e3:.2f} mJy, Frequency {freq*1e-9:.1f} GHz, and MJD {mjd} in {file}, will assign id -1 to it.")
                            new_comp_id = -1
                        if new_comp_id not in assigned_ids:
                            self.images[i,j].components[k].component_number=new_comp_id
                            if bool(closest_row["is_core"]):
                                self.images[i,j].set_core_component(new_comp_id)
                            assigned_ids.append(new_comp_id)
                        else:
                            logger.warning(f"Component {new_comp_id} at freq={freq*1e-9:.1f}GHz at mjd={mjd} identified multiple times, please double check!")
        self.update_comp_collections()
    def change_component_ids(self,old_comp_ids,new_comp_ids):
        """
        Reassign component ids.
        Args:
            old_comp_ids (list[int]): List of old component numbers
            new_comp_ids (list[int]): List of new component numbers
        """
        for i in range(len(self.images)):
            for j in range(len(self.images[0])):
                if isinstance(self.images[i,j],ImageData):
                    self.images[i,j].change_component_ids(old_comp_ids,new_comp_ids)
    def update_comp_collections(self):
        self.comp_collections=self.get_comp_collections()
    def fit_comp_spectrum(self,id,epoch="",fluxerr=False,fit_free_ssa=False,plot=False):
        if epoch=="":
            epochs=Time(self.dates).decimalyear
        elif isinstance(epoch,str):
            epochs=Time(np.array(epoch)).decimalyear
        elif not isinstance(epoch, list):
            raise Exception("Invalid input for 'epoch'.")
        cc=self.get_comp_collection(id)
        fit=cc.fit_comp_spectrum(epochs=epochs,fluxerr=fluxerr,fit_free_ssa=fit_free_ssa)
        for i in range(len(epochs)):
            if plot:
                plot=KinematicPlot()
                plot.plot_spectrum(cc, "black", epochs=epochs[i])
                plot.plot_spectral_fit(fit[i])
                plot.set_scale("log", "log")
                plt.show()
        return fit
    def fit_coreshift(self,ids,epoch="",k_r="",r0="",plot=False,combine_epoch=True,combine_comp=True):
        if epoch=="":
            epochs=Time(self.dates).decimalyear
        elif isinstance(epoch,str):
            epochs=Time(np.array(epoch)).decimalyear
        elif not isinstance(epoch, list):
            raise Exception("Invalid input for 'epoch'.")
        if isinstance(ids, int):
            ids=[ids]
        elif not isinstance(ids, list):
            raise Exception("Please provide valid id (int or list[int])")
        fits=[]
        for i in ids:
            cc=self.get_comp_collection(i)
            fit=cc.get_coreshift(epochs=epochs,k_r=k_r)
            fits.append(fit)
        freq_to_fit = []
        coreshift_to_fit = []
        coreshift_err_to_fit = []
        for j in range(len(epochs)):
            for i in range(len(ids)):
                freq_to_fit=np.concatenate([fits[i][j]["freqs"],freq_to_fit])
                coreshift_to_fit=np.concatenate([fits[i][j]["coreshifts"],coreshift_to_fit])
                coreshift_err_to_fit=np.concatenate([fits[i][j]["coreshift_err"],coreshift_err_to_fit])
                ref_freq=fits[i][j]["ref_freq"]
                if not combine_comp and not combine_epoch:
                    #do the fit
                    fit=coreshift_fit(freq_to_fit,coreshift_to_fit,coreshift_err_to_fit,ref_freq,k_r=k_r,r0=r0,print=True)
                    if plot:
                        plot=KinematicPlot()
                        plot.plot_coreshift_fit(fit)
                        plt.show()
                    freq_to_fit = []
                    coreshift_to_fit = []
                    coreshift_err_to_fit = []
            if not combine_epoch and combine_comp:
                # do the fit
                fit = coreshift_fit(freq_to_fit, coreshift_to_fit, coreshift_err_to_fit,ref_freq,k_r=k_r,r0=r0,print=True)
                if plot:
                    plot = KinematicPlot()
                    plot.plot_coreshift_fit(fit)
                    plt.show()
                freq_to_fit = []
                coreshift_to_fit = []
                coreshift_err_to_fit = []
        if combine_epoch and combine_comp:
            # do the fit
            fit = coreshift_fit(freq_to_fit, coreshift_to_fit, coreshift_err_to_fit,ref_freq,k_r=k_r,r0=r0,print=True)
            if plot:
                plot = KinematicPlot()
                plot.plot_coreshift_fit(fit)
                plt.show()
        return fit
    def get_ridgeline_profile(self,value="width",counter_ridgeline=False,freq="",epoch=""):
        """
        This function returns the ridgeline profiles combined over several epochs and frequencies
        Args:
            value (str): Value to extract ('flux', 'width', etc.)
            counter_ridgeline (bool): Choose whether to extract info for ridgeline (default, False) or counter_ridgeline (True)
            freq: Option to filter frequencies
            epoch: Option to filter epochs
        Returns:
            dist, value, value_err
        """
        #get filtered images
        images=self.get_images(freq=freq,epoch=epoch)
        #initialize arrays
        ridgelines=[]
        dists=[]
        values=[]
        value_errs=[]
        #retrieve ridgelines
        for image in images.flatten():
            if counter_ridgeline==False:
                ridgelines.append(image.ridgeline)
            else:
                ridgelines.append(image.counter_ridgeline)
        for ridgeline in ridgelines:
            #we will use the first ridgeline as reference (can be any ridgeline)
            ref_ridgeline=ridgelines[0]
            #calculate distance between ridgeline start to reference ridgeline
            delta_x=ridgeline.X_ridg[0] - ref_ridgeline.X_ridg[0]
            delta_y=ridgeline.Y_ridg[0] - ref_ridgeline.Y_ridg[0]
            delta=np.sqrt(delta_x**2+delta_y**2)
            #check if we need to subtract or add
            ridg_dist=np.array(ridgeline.dist)
            if delta_x*(ridgeline.X_ridg[-1]-ridgeline.X_ridg[0])+delta_y*(ridgeline.Y_ridg[-1]-ridgeline.Y_ridg[0])<0:
                #delta and jet direction anti-parallel
                ridg_dist-=delta
            else:
                #delta and jet direction parallel
                ridg_dist+=delta
            dists=np.concatenate((dists,ridg_dist))
            #extract values
            if value=="width":
                values=np.concatenate((values,ridgeline.width))
                value_errs=np.concatenate((value_errs,ridgeline.width_err))
            elif value=="open_angle":
                values=np.concatenate((values,ridgeline.open_angle))
                value_errs=np.concatenate((value_errs,ridgeline.open_angle_err))
            elif value=="intensity" or value=="flux":
                values=np.concatenate((values,ridgeline.intensity))
                value_errs=np.concatenate((value_errs,ridgeline.intensity_err))
            else:
                raise Exception(f"Invalid value '{value}' for 'value' parameter (allowed: 'width', 'open_angle', 'intensity')")
        #now we re-reference everything so that the ridgeline distance starts at 0
        if len(dists)>0:
            dists-=np.min(dists)
        return dists, values, value_errs
    def calculate_opening_angle(self,ids="",freq="",epochs="",snr_cut=1):
        """
        Calculate opening angle based on modelfit components
        Args:
            mode (str): Choose apply mode ('all', 'freq', 'epoch', "individual"), will average angle for 'all', per 'epoch' or per 'frequency'
            id (int, list[int]): Component IDs to use
            freq (float, list(float): Frequencies to use
            epoch: Epochs to use
            snr_cut: Mask component with signal-to-noise ratio less than this value
        Returns:
            all_angles:
        """
        if freq == "":
            freq = self.freqs
        elif isinstance(freq,(float,int)):
            freq = [freq]
        elif not isinstance(freq, list):
            raise Exception("Invalid input for 'freq'.")
        if epochs == "":
            epochs = self.dates
        elif isinstance(epochs, (float, int)):
            epochs = [epochs]
        elif not isinstance(epochs, list):
            try:
                epochs = epochs.tolist()
            except:
                raise Exception("Invalid input for 'epochs'.")
        all_angles=[]
        for f in freq:
            for e in epochs:
                ind_f=closest_index(self.freqs,f)
                ind_e=closest_index(self.mjds,Time(e).mjd)
                image=self.images[ind_e,ind_f]
                if isinstance(image,ImageData):
                    angles=image.calculate_opening_angle(ids=ids,snr_cut=snr_cut)
                    all_angles=np.append(all_angles,angles)
        return all_angles
    def get_model_profile(self,value="maj",id="",freq="",epoch="",show=False,core_position=False,plot=False,filter_unresolved=False,snr_cut=1):
        """
        Get information from the model components vs. distance from
        Args:
            value (str): Choose which parameter to retrieve ("flux","maj", "tb")
            id (list[int]): Choose which components to use (default: all)
            freq: Frequencies to use
            epoch: Epochs to use
            show (bool): Choose to display a plot
            core_position: Provide reference core position (will be used to calculate distance for every component)
            plot (bool): Choose whether to generate plot
            filter_unresolved (bool): Choose whether to filter out unresolved components
            snr_cut (float): Mask components with signal-to-noise ratio less than this value
        Returns:
            distance, values, value_err
        """
        if id=="":
            #do it for all components
            ccs=self.get_comp_collections(date_tolerance=self.date_tolerance,freq_tolerance=self.freq_tolerance)
        elif isinstance(id, list):
            ccs=[]
            for i in id:
                ccs.append(self.get_comp_collection(i))
        else:
            raise Exception("Invalid input for 'id'.")
        #extract data
        values = []
        dists = []
        value_errs = []
        #get reference core position
        if not core_position:
            try:
                core=self.images[0,0].get_core_component()
                core_position=[core.x*core.scale,core.y*core.scale]
            except:
                core_position=[0,0]
        for cc in ccs:
            info=cc.get_model_profile(freq=freq,epochs=epoch,core_position=core_position, filter_unresolved=filter_unresolved,snr_cut=snr_cut)
            try:
                values+=info[value]
                if value=="maj" or value=="flux" or value=="dist" or value=="min" or value=="theta" or value=="x" or value=="y" or value=="lin_pol" or value=="evpa":
                    value_errs+=info[value+"_err"]
            except:
                raise Exception("Invalid 'value' parameter.")
            dists=np.concatenate((dists,info["dist"]))
        if plot:
            if len(value_errs)==len(values):
                plt.errorbar(dists, values,yerr=value_errs,fmt=".")
            else:
                plt.scatter(dists, values,marker=".")
            plt.xlabel("Distance from Core [mas]")
            if value == "maj":
                plt.ylabel("Component Size [mas]")
            elif value == "flux":
                plt.ylabel("Flux Density [Jy]")
            elif value == "maj":
                plt.ylabel("Major Axis [mas]")
            elif value == "min":
                plt.ylabel("Minor Axis [mas]")
            elif value == "theta":
                plt.ylabel("Position Angle [°]")
            elif value == "PA":
                plt.ylabel("Component Position Angle [°]")
            elif value == "dist":
                plt.ylabel("Distance from core [mas]")
            elif value == "x":
                plt.ylabel("x [mas]")
            elif value == "y":
                plt.ylabel("y [mas]")
            elif value == "lin_pol":
                plt.ylabel("Linear Polarization [Jy]")
            elif value == "evpa":
                plt.ylabel("EVPA [°]")
            else:
                plt.ylabel("Brightness Temperature [K]")
        if show:
            plt.show()
        return dists, values, value_errs
    def get_average_component(self,id="",freq="",epoch="",weighted=True,filter_unresolved=True,snr_cut=0):
        """
        Function to calculate the average components
        Args:
            id (list[int]): List of component numbers
            freq (list[float]): Frequencies to consider
            epoch (list[str]): Epochs to consider
            weighted (bool): Choose whether to weight the average by the errors or not
            filter_unresolved (bool): Choose whether to filter out unresolved sources
            snr_cut (float): Flag all components with snr<snr_cut
        Returns:
            components (list[Component]): List of average components
        """
        if id=="":
            #do it for all components
            ccs=self.get_comp_collections(date_tolerance=self.date_tolerance,freq_tolerance=self.freq_tolerance)
        elif isinstance(id, list):
            ccs=[]
            for i in id:
                ccs.append(self.get_comp_codllection(i))
        elif isinstance(id, int):
            ccs=[self.get_comp_collection(id)]
        else:
            raise Exception("Invalid input for 'id'.")
        average_comps=[]
        for cc in ccs:
            average_comps.append(cc.get_average_component(freq=freq,epochs=epoch,weighted=weighted,
                                                          filter_unresolved=filter_unresolved,snr_cut=snr_cut))
        return average_comps
    def fit_collimation_profile(self,freq="",epoch="",id="",method="model",jet="Jet",fit_type='brokenPowerlaw',x0=False,s=100,
                                plot_data=True,plot_fit=True,fit_r0=True,shift_r=0,plot="",show=False,filter_unresolved=False,snr_cut=1,label="",color=plot_colors[0],marker="o",core_position=[0,0]):
        """
        Function to fit a collimation profile to the jet/counterjet
        Args:
            method (str): Method to use for collimation profile ('model' to use model components, 'ridgeline' to use ridgeline fit)
            jet (str): Choose whether to do Jet ('Jet'), Counterjet ('Cjet') or both ('Twin')
            fit_type (str): Choose fit_type to use ('brokenPowerlaw' or 'Powerlaw')
            x0 (list[float]): Start values for fit
            s (float): Sharpness parameter for broken Powerlaw
            plot_data (bool): Choose whether to plot the fitted data
            plot_fit (bool): Choose whether to plot the fit
            fit_r0 (bool): Choose whether to include (r+r0) in fit or just r
            shift_r (float): Shift plot by given radius in mas.
            plot (JetProfilePlot): Pass JetProfilePlot to add plots, default will create a new one
            show (bool): Choose whether to show the plot
            filter_unresolved (bool): Choose whether to filter out unresolved components
            snr_cut (float): Filter out components with signal-to-noise ratio less than given number
            label (str): Label for the fitted data/fit
            color (str): Plot color
            marker (str): Plot marker
            core_position (list[float]): Core position in image coordinates (mas) for distance calculation
        Returns:
            plot (JetProfilePlot)
        """
        fit_fail_jet=False
        fit_fail_counterjet=False
        if method=="model":
            #jet info
            dists, widths, width_errs = self.get_model_profile("maj",id=id,freq=freq,epoch=epoch,core_position=core_position,
                                                               filter_unresolved=filter_unresolved,snr_cut=snr_cut)
            #TODO get counter jet info
            cdists = []
            cwidths = []
            cwidth_errs = []
        elif method=="ridgeline":
            #jet info
            dists, widths, width_errs = self.get_ridgeline_profile(value="width",counter_ridgeline=False,freq=freq,epoch=epoch)
            #counterjet info
            cdists, cwidths, cwidth_errs = self.get_ridgeline_profile(value="width",counter_ridgeline=True,freq=freq,epoch=epoch)
        else:
            raise Exception("Please specify valid 'method' for fit_collimation_profile ('model', 'ridgeline').")
        if jet=="Jet" or jet=="Twin":
            if True:
                beta, sd_beta, chi2, out = fit_width(dists, widths, width_err=width_errs, dist_err=False,s=s,
                                                     fit_type=fit_type,x0=x0,fit_r0=fit_r0)
            else:
                logger.warning("Collimation fit did not work for jet!")
                fit_fail_jet=True
        if jet=="CJet" or jet=="Twin":
            try:
                cbeta, csd_beta, cchi2, cout = fit_width(cdists, cwidths, width_err=cwidth_errs, dist_err=False,s=s,
                                                     fit_type=fit_type,x0=x0,fit_r0=fit_r0)
            except:
                logger.warning("Collimation fit did not work for counter jet!")
                fit_fail_counterjet=True
        if plot=="":
            plot=JetProfilePlot(jet=jet,redshift=self.redshift,shift_r=shift_r)
        else:
            try:
                if plot.jet != jet:
                    raise Exception("Plot has wrong 'jet' type.")
            except:
                raise Exception("Plot is not a valid 'JetProfilePlot'.")
        if plot_data:
            if jet=="Jet":
                plot.plot_profile(dists,widths,width_errs,color,marker,label=label)
            elif jet=="CJet":
                plot.plot_profile(cdists,cwidths,cwidth_errs,color,marker,label=label)
            else:
                plot.plot_profile([dists,cdists],[widths,cwidths],[width_errs,cwidth_errs],color,marker,label=label)
        x=np.linspace(min(dists),max(dists),1000)
        if plot_fit:
            if jet=="Jet" or jet=="Twin":
                if not fit_fail_jet:
                    plot.plot_fit(x, fit_type, beta, sd_beta, chi2, "Jet", color, label=label,fit_r0=fit_r0,s=s)
            if jet=="CJet" or jet=="Twin":
                if not fit_fail_counterjet:
                    plot.plot_fit(x, fit_type, cbeta, csd_beta, cchi2, "CJet", color, label=label,fit_r0=fit_r0,s=s)
        if show:
            plot.plot_legend()
            plt.show()
        return plot
    def get_component_variability_doppler_factor(self,id="",freq="",flare_start="1900-01-01",flare_end="3000-01-01",
                                                 fit_mode="lin-log",plot_fit=True,snr_cut=0,slope="down",size=0):
        """
        Function to calculate the variability doppler factor from modelfit components following Jorstad+05/Jorstad+17.
        Args:
            id:
            freq:
            flare_start (str): Flare start epoch
            flare_end (str): Flare end epoch
            fit_mode (str): decide whether to do a linear fit in ("lin-log") or exponential fit ("exp")
            snr_cut (float): filter out components with SNR < snr_cut
            slope (str): Decide which slope to fit decay ('down') or rise ('up')
            size (float): Average component size in mas
        Returns:
            Variability Doppler Factor, Error
        """
        cosmo = FlatLambdaCDM(H0=H0, Om0=Om0)
        if size==0:
            logger.warning("Component Size set to 0 mas, please define proper 'size' parameter.")
        comp_times, comp_fluxs, comp_flux_errs = self.plot_component_evolution("flux",id=id,freq=freq,show=False,snr_cut=snr_cut)
        delta_vars = []
        delta_vars_err = []
        for i in range(len(comp_times[0])):
            time=np.array(comp_times[0][i])
            flux=np.array(comp_fluxs[0][i])
            flux_err=np.array(comp_flux_errs[0][i])
            start_year=Time(flare_start).decimalyear
            end_year=Time(flare_end).decimalyear
            inds = (time > start_year) & (time < end_year)
            filtered_time = time[inds]
            filtered_flux = flux[inds]
            filtered_flux_errs = flux_err[inds]
            max_ind=np.argmax(filtered_flux)
            if slope=="up":
                if len(filtered_flux[:max_ind])==0:
                    raise Exception("Not enough data to fit.")
                else:
                    min_ind_before = np.argmin(filtered_flux[:max_ind])
                    times=filtered_time[min_ind_before:max_ind+1]
                    flux=filtered_flux[min_ind_before:max_ind+1]
                    flux_errs = filtered_flux_errs[min_ind_before:max_ind + 1]
            elif slope=="down":
                if len(filtered_flux[max_ind:])<=1:
                    raise Exception("Not enough data to fit.")
                else:
                    min_ind_after = np.argmin(filtered_flux[max_ind:]) + max_ind
                    times = filtered_time[max_ind:min_ind_after + 1]
                    flux=filtered_flux[max_ind:min_ind_after+1]
                    flux_errs=filtered_flux_errs[max_ind:min_ind_after+1]
            else:
                raise Exception(f"Invalid slope parameter '{slope}'.")
            if len(flux)<=1:
                delta_var=0
                delta_var_err=0
                logger.warning("Doppler factor fit did not work, not enough data.")
            else:
                if fit_mode=="lin-log":
                    def linear_model(t, k, c):
                        return k * t + c
                    popt, pcov = curve_fit(linear_model, times, np.log(flux), sigma=flux_errs/flux*np.log(flux), absolute_sigma=True)
                    k, c = popt
                    dk, dc = np.sqrt(np.diag(pcov))
                    if plot_fit:
                        plt.plot(times,np.exp(linear_model(times,*popt)))
                elif fit_mode=="exp":
                    def exponential_model(t, k, c, s0):
                        return np.exp(k * (t - c)) + s0
                    popt, pcov = curve_fit(exponential_model, times, flux, p0=[1, times[0], 0],
                                           sigma=flux_errs, absolute_sigma=True)
                    k, c, s0 = popt
                    dk, dc, ds0 = np.sqrt(np.diag(pcov))
                    if plot_fit:
                        plt.plot(times,exponential_model(times,*popt))
                else:
                    raise Exception(f"Invalid fit_mode '{fit_mode}'.")
                delta_var = 15.8 * size * 1.6 * cosmo.luminosity_distance(self.redshift).to(u.Gpc).value / (
                        abs(1 / k) * (1 + self.redshift))
                delta_var_err = abs(dk / k * delta_var)
                logger.debug(f"Fitted variability Doppler factor of {delta_var:.2f} +/- {delta_var_err:.2f}")
            delta_vars.append(delta_var)
            delta_vars_err.append(delta_var_err)
        return delta_vars, delta_vars_err
    def plot_component_evolution(self,value="flux",id="",freq="",show=True,colors=plot_colors,markers=plot_markers,
                                 evpa_pol_plot=True,plot_errors=False,snr_cut=1,labels=True,plot_evpa=False,evpa_len=200,fig="",ax=""):
        """
        Plot time evolution of different component properties
        Args:
            value (str): Choose which value to plot ("flux", "lin_pol", "dist", "evpa", ....)
            id (list[int]): List of components to plot (default: all)
            freq (list[float]): List of frequencies to plot (default: all)
            show (bool):  Choose whether to show the plots
            colors (list[str]): List of colors corresponding to id-array
            markers (list[str]): List of markers corresponding to id-array
            evpa_pol_plot (bool): If True will use a poincarre-sphere like plot for EVPA, if false, standard X-Y plot
            plot_errors (bool): Choose whether to plot error bars
            snr_cut (float): Choose snr_cut (will flag all components with snr<snr_cut)
            labels (list[str]): List of labels corresponding to id-array
            plot_evpa (bool): If True, will plot the component EVPA as a tilted bar on top of each datapoint
            evpa_len (float): Length for EVPA bar if plot_evpa==True
            fig (Figure): Optional input of a matplotlib Figure object to plot on
            ax (Axis): Optional input of a matplotlib Axis object to plot on
        Returns:
            x,y,y_err -> values that are being plotted
        """
        if freq=="":
            freq=self.freqs
        elif not isinstance(freq, list):
            raise Exception("Invalid input for 'freq'.")
        if id=="":
            #do it for all components
            ccs=self.get_comp_collections(date_tolerance=self.date_tolerance,freq_tolerance=self.freq_tolerance)
        elif isinstance(id, list):
            ccs=[]
            for i in id:
                ccs.append(self.get_comp_collection(i))
        else:
            raise Exception("Invalid input for 'id'.")
        #comment
        xs=[]
        ys=[]
        yer=[]
        for fr in freq:
            # One plot per frequency with all components
            if (value=="evpa" or value=="EVPA") and evpa_pol_plot:
                plot=KinematicPlot(pol_plot=True,fig=fig,ax=ax)
            else:
                plot = KinematicPlot(fig=fig,ax=ax)
            years = []
            xvalues = []
            yvalues = []
            yerrs = []
            for ind, cc in enumerate(ccs):
                color_ind = ind % len(colors)
                color = colors[color_ind]
                marker_ind = ind % len(markers)
                marker = markers[marker_ind]
                if isinstance(labels,list):
                    lab_ind=ind%len(labels)
                    label=labels[lab_ind]
                elif labels:
                    label=cc.name
                else:
                    label=""
                if value=="flux":
                    x,y,yerr=plot.plot_fluxs(cc, color=color,marker=marker,plot_errors=plot_errors,label=label,
                                             snr_cut=snr_cut,plot_evpa=plot_evpa,evpa_len=evpa_len)
                    yerrs.append(yerr)
                elif value=="tb":
                    x,y,yerr=plot.plot_tbs(cc, color=color,marker=marker,plot_errors=plot_errors,snr_cut=snr_cut,
                                           label=label,plot_evpa=plot_evpa,evpa_len=evpa_len)
                    yerrs.append(yerr)
                elif value=="dist":
                    x,y,yerr=plot.plot_kinematics(cc, color=color,marker=marker,plot_errors=plot_errors,snr_cut=snr_cut,
                                                  label=label,plot_evpa=plot_evpa,evpa_len=evpa_len)
                    yerrs.append(yerr)
                elif value=="pos" or value=="PA":
                    x,y=plot.plot_pas(cc, color=color,marker=marker,snr_cut=snr_cut,label=label,plot_evpa=plot_evpa,evpa_len=evpa_len)
                elif value=="lin_pol" or value=="linpol":
                    x,y,yerr=plot.plot_linpol(cc, color=color,marker=marker,snr_cut=snr_cut,label=label,plot_errors=plot_errors,
                                              plot_evpa=plot_evpa,evpa_len=evpa_len)
                    yerrs.append(yerr)
                elif value=="evpa" or value=="EVPA":
                    x,y,yerr=plot.plot_evpa(cc, color=color,marker=marker,snr_cut=snr_cut,plot_errors=plot_errors,label=label)
                    years=np.concatenate((years,cc.year.flatten()))
                    yerrs.append(yerr)
                elif value=="maj":
                    x,y,yerr=plot.plot_maj(cc, color=color,marker=marker,plot_errors=plot_errors,snr_cut=snr_cut,
                                           label=label,plot_evpa=plot_evpa,evpa_len=evpa_len)
                    yerrs.append(yerr)
                elif value=="min":
                    x,y,yerr=plot.plot_min(cc, color=color,marker=marker,plot_errors=plot_errors,snr_cut=snr_cut,label=label,
                                           plot_evpa=plot_evpa,evpa_len=evpa_len)
                    yerrs.append(yerr)
                elif value=="theta":
                    x,y,yerr=plot.plot_theta(cc, color=color,marker=marker,plot_errors=plot_errors,snr_cut=snr_cut,label=label,
                                             plot_evpa=False,evpa_len=evpa_len)
                    yerrs.append(yerr)
                elif value=="fracpol" or value=="frac_pol":
                    x,y,yerr=plot.plot_fracpol(cc, color=color,marker=marker,plot_errors=plot_errors,snr_cut=snr_cut,label=label,plot_evpa=False,evpa_len=evpa_len)
                elif value=="flux+evpa":
                    x, y, yerr = plot.plot_fluxs(cc, color=color, marker=marker, plot_errors=plot_errors, label=label,
                                                 snr_cut=snr_cut,plot_evpa=True,evpa_len=evpa_len)
                    yerrs.append(yerr)
                elif value=="linpol+evpa" or "lin_pol+evpa":
                    x, y, yerr = plot.plot_linpol(cc, color=color, marker=marker,plot_errors=plot_errors,snr_cut=snr_cut, label=label,plot_evpa=True,evpa_len=evpa_len)
                    yerrs.append(yerr)
                elif value=="fracpol+evpa" or "frac_pol+evpa":
                    x, y, yerr = plot.plot_fracpol(cc, color=color, marker=marker,plot_errors=plot_errors, snr_cut=snr_cut, label=label,plot_evpa=True,evpa_len=evpa_len)
                    yerrs.append(yerr)
                else:
                    raise Exception(f"Not possible to plot '{value}' for component!")
                xvalues.append(x)
                yvalues.append(y)
            xs.append(xvalues)
            ys.append(yvalues)
            yer.append(yerrs)
            #set plot lims for polar plot according to lowest and highest year
            if (value=="evpa" or value=="EVPA") and evpa_pol_plot:
                years_range = max(years) - min(years)
                plot.ax.set_rmin(min(years) - 0.05 * years_range)
                plot.ax.set_rmax(max(years) + 0.05 * years_range)
            plot.ax.legend()
            if show:
                plt.show()
        return xs,ys,yer
    def plot_components(self,id="",freq="",epoch="",show=False,xlim=[10,-10],ylim=[-10,10],colors="",fmts=[""],markersize=4,labels=[""],
                        filter_unresolved=False,snr_cut=1,capsize=None,plot_errorbar=True,fig="",ax=""):
        """
        Plots component positions on top of a map.
        """
        if id=="":
            #do it for all components
            ccs=self.get_comp_collections(date_tolerance=self.date_tolerance,freq_tolerance=self.freq_tolerance)
        elif isinstance(id, list):
            ccs=[]
            for i in id:
                ccs.append(self.get_comp_collection(i))
        else:
            raise Exception("Invalid input for 'id'.")
        if colors=="":
            colors=plot_colors
        plot=ModelImagePlot(xlim=xlim,ylim=ylim,fig=fig,ax=ax)
        for i,cc in enumerate(ccs):
            color=colors[i % len(colors)]
            fmt=fmts[i % len(fmts)]
            label=labels[i%len(labels)]
            if label=="":
                label=cc.name
            plot.plotCompCollection(cc,freq=freq,epoch=epoch,color=color,fmt=fmt,markersize=markersize,capsize=capsize,
                                    filter_unresolved=filter_unresolved,snr_cut=snr_cut,label=label,plot_errorbar=plot_errorbar)
        if show:
            plot.show()
    def plot_ridgelines(self,show=False,xlim=[10,-10],ylim=[-10,10],colormap="viridis",vmin="",vmax="",linewidths=[2],labels=[""]):
        plot = ModelImagePlot(xlim=xlim, ylim=ylim)
        if vmin=="":
            vmin=np.min(self.mjds)
        if vmax=="":
            vmax=np.max(self.mjds)
        norm = colors.Normalize(vmin=vmin, vmax=vmax)
        cmap = plt.get_cmap(colormap)
        for ind,image in enumerate(self.images.flatten()):
            ridgeline=image.ridgeline
            linewidth=linewidths[ind%len(linewidths)]
            label=labels[ind%len(linewidths)]
            if label=="":
                label=image.date
            plot.plotRidgeline(ridgeline,color=cmap(norm(image.mjd)),label=label,linewidth=linewidth)
        if show:
            plot.show()
    def get_speed(self,id="",freq="",order=1,show_plot=False, weighted_fit=True, plot_errors=False, plot_evpa=False, evpa_len=200,
                  colors=plot_colors,markers=plot_markers,snr_cut=1,fig="",ax="",t0_error_method="Gauss"):
        """
        Perform kinematic fit of the distance to the core vs time.
        Args:
            id (list[int]): List of component ids to use
            freq (list[float]): Choose which frequency to do the fit for
            order (int): Choose polynomial fit order (default: 1 (linear fit))
            show_plot (bool): Choose whether to show kinematic plot
            weighted_fit (bool): Choose whether to weight the data by their errors for the fit
            plot_errors (bool): Choose whether to plot data point errors
            plot_evpa (bool): Choose whether to overplot the EVPA direction as a tilted bar on top of the data points
            evpa_len (float): Length of the EVPA bar if plot_evpa==True
            colors (list[str]): Colors corresponding to the selected id-array
            markers (list[str]): Markers corresponding to the selected id-array
            snr_cut (float): Option to filter out components with snr<snr_cut
            fig (Figure): Optional matplotlib-Figure element to use for plot
            ax (Axis): Optional matplotlib-Axis element to use for plot
            t0_error_method (str): Choose method to calculate error of t0 from the fit errors (y0_err, mu_err), options
            are "Gauss" (default) for standard Gauss error propagation or "Rösch"
            (see Master Thesis F. Rösch 2019 https://www.physik.uni-wuerzburg.de/fileadmin/11030400/2019/Masterarbeit_Roesch.pdf"
        Returns:
            list([dictionary]): List of fit parameters (One dictionary per frequency and component)
        """
        if freq=="":
            freq=self.freqs
        elif not isinstance(freq, list):
            raise Exception("Invalid input for 'freq'.")
        if id=="":
            #do it for all components
            ccs=self.get_comp_collections(date_tolerance=self.date_tolerance,freq_tolerance=self.freq_tolerance)
        elif isinstance(id, list):
            ccs=[]
            for i in id:
                ccs.append(self.get_comp_collection(i))
        else:
            raise Exception("Invalid input for 'id'.")
        fits=[]
        for fr in freq:
            #One plot per frequency with all components
            plot = KinematicPlot(fig=fig,ax=ax)
            for ind,cc in enumerate(ccs):
                fit=cc.get_speed(freqs=fr,order=order, weighted_fit=weighted_fit, snr_cut=snr_cut,t0_error_method=t0_error_method)
                for f in fit:
                    tmin=np.min(cc.year.flatten())
                    tmax=np.max(cc.year.flatten())
                    col_ind = ind % len(colors)
                    color=colors[col_ind]
                    mark_ind = ind % len(markers)
                    marker=markers[mark_ind]
                    plot.plot_kinematics(cc,color=color,label=cc.name,marker=marker,plot_errors=plot_errors,plot_evpa=plot_evpa,
                                         evpa_len=evpa_len,snr_cut=snr_cut)
                    if order>1:
                        plot.plot_kinematic_fit(tmin-0.1*(tmax-tmin),tmax+0.1*(tmax-tmin),
                                             f["linear_fit"],color=color,t_mid=f["t_mid"])
                    else:
                        if not isinstance(f["linear_fit"],int):
                            plot.plot_kinematic_fit_t0(tmin-0.1*(tmax-tmin),tmax+0.1*(tmax-tmin),
                                                 f["linear_fit"],color=color)
                    fits.append(f)
            if show_plot:
                plt.legend()
                plt.show()
        return fits
    def get_speed2d(self,id="",order=1,freq="",show_plot=False,plot_trajectory=False,plot_errors=False,plot_evpa=False,
                    evpa_len=200,colors=plot_colors,markers=plot_markers,snr_cut=1,weighted_fit=True,fig="",ax=""):
        """
        Perform kinematic fit of the X-distance and Y-distance versus time.
        Args:
            id (list[int]): List of component ids to use
            freq (list[float]): Choose which frequency to do the fit for
            order (int): Choose polynomial fit order (default: 1 (linear fit))
            show_plot (bool): Choose whether to show kinematic plot
            plot_trajectory (bool): Choose wheter to plot the fitted trajectory
            plot_errors (bool): Choose whether to plot data point errors
            plot_evpa (bool): Choose whether to overplot the EVPA direction as a tilted bar on top of the data points
            evpa_len (float): Length of the EVPA bar if plot_evpa==True
            colors (list[str]): Colors corresponding to the selected id-array
            markers (list[str]): Markers corresponding to the selected id-array
            snr_cut (float): Option to filter out components with snr<snr_cut
            weighted_fit (bool): Choose whether to weight the data by their errors for the fit
            fig (Figure): Optional matplotlib-Figure element to use for plot
            ax (Axis): Optional matplotlib-Axis element to use for plot
        Returns:
            list([dictionary]): List of fit parameters (One dictionary per frequency and component)
        """
        if freq == "":
            freq = self.freqs
        elif not isinstance(epoch, list):
            raise Exception("Invalid input for 'freq'.")
        if id == "":
            # do it for all components
            ccs = self.get_comp_collections(date_tolerance=self.date_tolerance, freq_tolerance=self.freq_tolerance)
        elif isinstance(id, list):
            ccs = []
            for i in id:
                ccs.append(self.get_comp_collection(i))
        else:
            raise Exception("Invalid input for 'id'.")
        fits = []
        for fr in freq:
            # One plot per frequency with all components
            if plot_trajectory:
                plot = ModelImagePlot(fig=fig,ax=ax)
            else:
                plot = KinematicPlot(fig=fig,ax=ax)
            for ind, cc in enumerate(ccs):
                fit_x,fit_y=cc.get_speed2d(freqs=fr,order=order,snr_cut=snr_cut,weighted_fit=weighted_fit)
                tmin = np.min(cc.year.flatten())
                tmax = np.max(cc.year.flatten())
                mark_ind = ind % len(markers)
                marker = markers[mark_ind]
                ind = ind % len(colors)
                color = colors[ind]
                if plot_trajectory:
                    plot.plot_kinematic_2d_fit(tmin-0.1*(tmax-tmin),tmax+0.1*(tmax-tmin),
                                             fit_x[0]["linear_fit"],fit_y[0]["linear_fit"],
                                               color=color,label=cc.name,t_mid=fit_x[0]["t_mid"])
                else:
                    plot.plot_kinematics(cc,color=color,marker=marker,label=cc.name,snr_cut=snr_cut,plot_errors=plot_errors,plot_evpa=plot_evpa,
                                         evpa_len=evpa_len)
                    plot.plot_kinematic_2d_fit(tmin-0.1*(tmax-tmin),tmax+0.1*(tmax-tmin),
                                             fit_x[0]["linear_fit"],fit_y[0]["linear_fit"],
                                               color=color,t_mid=fit_x[0]["t_mid"])
                fits.append([fit_x[0],fit_y[0]])
            if show_plot:
                plt.legend()
                plt.show()
        return fits
    def movie(self,plot_mode="stokes_i",freq="",noise="max",n_frames=500,interval=50,
              start_mjd="",end_mjd="",dpi=300,fps=20,save="",plot_components=False,fill_components=False,
              ref_image="", plot_timeline=True, component_cmap="hot_r",title="",**kwargs):
        """
        Function to create movies from image cube
        Args:
            plot_mode (str): Choose plot mode ('stokes_i','lin_pol','frac_pol')
            freq (float or list[float]): Choose frequencies in GHz to create movie
            noise (str): Choose which common noise level to use ('min' or 'max')
            n_frames (int): Number of frames
            interval (float): Interval in milliseconds between frames
            start_mjd (float): Start MJD of the movie
            end_mjd (float): End MJD of the movie
            dpi (int): Choose resolution in dpi
            save (str): Choose name of the movie file
            plot_components (bool): Choose whether to animate modelfit components (correct assignment should be done before!)
            fill_components (bool): If true, will fill components with a colormap based on their flux density
            plot_timeline (bool): Choose whether to plot a timeline
            component_cmap (str): Matplotlib colormap for 'fill_components' option.
            title (str): Choose Plot title (default: MJD)
            **kwargs: Plot options known from plot() function
        """
        #TODO sanity check if all images have same dimensions, otherwise it will crash
        if freq=="":
            freq=[f*1e-9 for f in self.freqs]
        elif isinstance(freq, (float,int)):
            freq=[freq]
        elif isinstance(freq,list):
            pass
        else:
            raise Exception("Please enter valid 'freq' value.")
        if save=="":
            save=[]
            for f in freq:
                save.append(f"movie_{f:.0f}GHz.mp4")
        elif isinstance(save, str):
            save_ar=[]
            if len(freq)>1:
                for f in freq:
                    save_ar.append(save+f"_{f:.0f}GHz.mp4")
                save=save_ar
            else:
                save=[save]
        elif not isinstance(save, list):
            raise Exception("Please enter valid 'save' value.")
        for index,f in enumerate(freq):
            # create figure environment to plot the data on.
            fig, ax = plt.subplots()
            ind=closest_index(self.freqs,f*1e9)
            image_datas=self.images[:,ind].flatten()
            images=[]
            lin_pols=[]
            evpas=[]
            times=[]
            #Generate interpolator function
            for image in image_datas:
                if isinstance(image, ImageData):
                    images.append(image.Z)
                    lin_pols.append(image.lin_pol)
                    evpas.append(image.evpa)
                    times.append(image.mjd)
            grid=(times,np.arange(len(images[0])),np.arange(len(images[0][0])))
            #Stokes I
            interp_i = RegularGridInterpolator(grid, images, method='linear', bounds_error=False,
                                                  fill_value=None)
            #Lin Pol
            interp_linpol = RegularGridInterpolator(grid, lin_pols, method='linear', bounds_error=False,
                                               fill_value=None)
            #check for EVPA rotations >90 and wrap them (otherwise the EVPAs might be spinning around like crazy)
            for i, evpa in enumerate(evpas):
                if i>0:
                    for k in range(len(evpa)):
                        for j in range(len(evpa[0])):
                            if evpa[k][j]-evpas[i-1][k][j]>np.pi/2:
                                for l in range(i,len(evpas)):
                                    evpas[l][k][j]-=np.pi
                            if evpa[k][j]-evpas[i-1][k][j]<-np.pi/2:
                                for l in range(i,len(evpas)):
                                    evpas[l][k][j]+=np.pi
            #EVPA
            interp_evpa = RegularGridInterpolator(grid, evpas, method='linear', bounds_error=False,
                                               fill_value=None)
            if noise=="max":
                im_ind=np.argmax(self.noises[:,ind].flatten())
            if noise=="min":
                im_ind=np.argmin(self.noises[:,ind].flatten())
            if ref_image=="":
                ref_image=self.images[:,ind].flatten()[im_ind]
            #get levs
            plot=ref_image.plot(plot_mode=plot_mode,show=False,**kwargs)
            plt.close()
            levs_linpol = plot.levs_linpol
            levs1_linpol = plot.levs1_linpol
            levs = plot.levs
            levs1 = plot.levs1
            linpol_vmax = plot.linpol_vmax
            fracpol_vmax = plot.fracpol_vmax
            stokes_i_vmax = plot.stokes_i_vmax
            if start_mjd=="":
                start_mjd=np.min(self.images_mjd[:,ind].flatten())
            if end_mjd=="":
                end_mjd=np.max(self.images_mjd[:,ind].flatten())
            mjd_frames=np.linspace(start_mjd,end_mjd,n_frames)
            logger.info("Creating movie")
            progress_bar=tqdm(total=n_frames,desc="Processing")
            def update(frame):
                progress_bar.update(1)
                ax.cla()
                #modify ref_image to interpolated values
                current_mjd=mjd_frames[frame]
                X,Y=np.meshgrid(np.arange(len(images[0])),np.arange(len(images[0][0])),indexing="ij")
                query_points=np.array([np.full_like(X,current_mjd,dtype=float),X,Y]).T.reshape(-1,3)
                ref_image.Z=interp_i(query_points).reshape(len(images[0]), len(images[0][0])).T
                ref_image.stokes_i = ref_image.Z
                ref_image.lin_pol = interp_linpol(query_points).reshape(len(images[0]), len(images[0][0])).T
                ref_image.evpa = interp_evpa(query_points).reshape(len(images[0]), len(images[0][0])).T
                #plot the ref_image
                year_title=Time(current_mjd,format="mjd").decimalyear
                plot=ref_image.plot(plot_mode=plot_mode,fig=fig, ax=ax, show=False, title=f"Year: {year_title:.2f}",
                               levs=levs,levs1=levs1,levs_linpol=levs_linpol,levs1_linpol=levs1_linpol,
                                linpol_vmax=linpol_vmax, fracpol_vmax=fracpol_vmax,stokes_i_vmax=stokes_i_vmax,**kwargs)
                #plot_components if necessary:
                if plot_components:
                    for cc in self.get_comp_collections(date_tolerance=self.date_tolerance,freq_tolerance=self.freq_tolerance):
                        #interpolate component
                        comp_interpolated=cc.interpolate(mjd=current_mjd,freq=f)
                        #try plotting it (comp_interpolated could be None if mjd is out of range)
                        try:
                            #check if we want to colorcode the component flux
                            if fill_components:
                                colormap=cm.get_cmap(component_cmap)
                                flux_color=colormap(colors.Normalize(vmin=np.min(cc.fluxs),vmax=np.max(cc.fluxs))(comp_interpolated.flux))
                            else:
                                flux_color=""
                            #plot the interpolated component
                            plot.plotComponent(comp_interpolated.x,comp_interpolated.y,comp_interpolated.maj,comp_interpolated.min,
                                               comp_interpolated.pos,comp_interpolated.scale,fillcolor=flux_color)
                        except:
                            pass
                #plot timeline
                if plot_timeline:
                    plot.plotTimeline(Time(start_mjd,format="mjd").decimalyear,Time(end_mjd,format="mjd").decimalyear,
                                      Time(current_mjd,format="mjd").decimalyear,Time(np.array(times),format="mjd").decimalyear)
            #create animation
            ani = animation.FuncAnimation(fig, update, frames=n_frames,interval=interval, blit=False)
            ani.save(save[index],writer="ffmpeg",dpi=dpi,fps=round(1/interval*1000))
            logger.info(f"Movie for {f:.0f}GHz exported as '{save[index]}'")
    def format_kwargs(self,kwargs,mode):
        # read in input parameters for individual plots
        if mode == "all":
            # This means kwargs are just numbers
            for key, value in kwargs.items():
                kwargs[key] = np.empty(self.shape, dtype=object)
                kwargs[key] = np.atleast_2d(kwargs[key])
                for i in range(len(self.dates)):
                    for j in range(len(self.freqs)):
                        kwargs[key][i, j] = value
        elif mode == "freq":
            # allow input parameters per frequency
            for key, value in kwargs.items():
                kwargs[key] = np.empty(self.shape, dtype=object)
                kwargs[key] = np.atleast_2d(kwargs[key])
                if not isinstance(value, list):
                    for i in range(len(self.dates)):
                        for j in range(len(self.freqs)):
                            kwargs[key][i, j] = value
                elif len(value) == len(self.freqs):
                    for i in range(len(self.dates)):
                        for j in range(len(self.freqs)):
                            kwargs[key][i, j] = value[j]
                else:
                    raise Exception(f"Please provide valid {key} parameter.")
        elif mode == "epoch":
            # allow input parameters per epoch
            for key, value in kwargs.items():
                kwargs[key] = np.empty(self.shape, dtype=object)
                kwargs[key] = np.atleast_2d(kwargs[key])
                if not isinstance(value, list):
                    for i in range(len(self.dates)):
                        for j in range(len(self.freqs)):
                            kwargs[key][i, j] = value
                elif len(value) == len(self.dates):
                    for i in range(len(self.dates)):
                        for j in range(len(self.freqs)):
                            kwargs[key][i, j] = value[i]
                else:
                    raise Exception(f"Please provide valid {key} parameter.")
        elif mode == "individual":
            # allow input parameters per frequency
            for key, value in kwargs.items():
                kwargs[key] = np.empty(self.shape, dtype=object)
                kwargs[key] = np.atleast_2d(kwargs[key])
                if not isinstance(value, list):
                    for i in range(len(self.dates)):
                        for j in range(len(self.freqs)):
                            kwargs[key][i, j] = value
                elif len(value) == len(self.images) and len(value[0]) == len(self.images[0]):
                    for i in range(len(self.dates)):
                        for j in range(len(self.freqs)):
                            kwargs[key][i, j] = value[i][j]
                else:
                    raise Exception(f"Please provide valid {key} parameter.")
        else:
            raise Exception("Please select valid mode ('individual','freq','epoch','all'")
        return kwargs
 |