The ImageData class

The imageData class which hold one image and allows operations on this.

ImageData

Bases: object

Class to handle VLBI Image data (single image with or without polarization at one frequency)

Attributes:
  • name (str) –

    Source name of the observation

  • date (str) –

    Date of the observation

  • mjd (float) –

    MJD of the observation

  • freq (float) –

    Frequency of the observation in Hz

  • beam_maj (float) –

    Beam Major Axis in the intrinsic image scale (usually 'mas')

  • beam_min (float) –

    Beam Minor Axis in the intrinsic image scale (usually 'mas')

  • beam_pa (float) –

    Beam position angle in degrees (North through East)

  • scale (float) –

    Conversion from degrees to the intrinsic image scale (for 'mas': 3.6e6)

  • degpp (float) –

    Degrees per pixel

  • unit (str) –

    Intrinsic Scale Unit of the image ('mas', 'arcsec', 'arcsec', 'deg')

  • uvw (list[int]) –

    uv-weighting to use for DIFMAP

  • stokes_i (list[list[float]]) –

    2d-array of the Stokes I image

  • stokes_q (list[list[float]]) –

    2d-array of the Stokes Q image (if polarization loaded)

  • stokes_u (list[list[float]]) –

    2d-array of the Stokes U image (if polarization loaded)

  • residual_map (list[list[float]]) –

    2d-array of the residual map (if .uvf file provided)

  • lin_pol (list[list[float]]) –

    2d-array of the linear polarization

  • evpa (list[list[float]]) –

    2d-array of the EVPA

  • mask (list[list[bool]]) –

    Image mask

  • model (DataFrame) –

    DataFrame with all components of the loaded model

  • model_i (DataFrame) –

    DataFrame with all Stokes I clean components

  • model_q (DataFrame) –

    DataFrame with all Stokes Q clean components

  • model_u (DataFrame) –

    DataFrame with all Stokes U clean components

  • components (list[Component]) –

    List of Modelfit-Components

  • noise (float) –

    Image noise in Jy, calculated using the specified 'noise_method'

  • pol_noise (float) –

    Image noise of the linear polarization image in Jy

  • noise_3sigma (float) –

    3-sigma Image noise level in Jy

  • pol_noise_3sigma (float) –

    3-sigma Polarization noise level in Jy

  • integrated_flux_image (float) –

    Integrated flux density of the entire image (pixel sum)

  • integrated_flux_clean (float) –

    Integrated flux density from the Stokes I clean model

  • integrated_pol_flux_image (float) –

    Integrated linearly polarized flux density of the entire image (pixel sum)

  • integrated_pol_flux_clean (float) –

    Integrated linearly polarized flux density from Stokes Q and U clean models

  • evpa_average (float) –

    Average EVPA calculated from Stokes Q and U clean models (in rad!).

  • frac_pol (float) –

    Fractional polarization of the image (integrated_flux_pol_clean/integrated_flux_clean)

  • uvtaper (list[float]) –

    Pass uvtaper parameter [fraction, uv-radius]

  • ridgeline (Ridgeline) –

    Ridgeline of the image (can be created with self.get_ridgeline())

  • counter_ridgeline (Ridgline) –

    Counter-Ridgeline of the image (can be created with self.get_ridgeline())

  • file_path (str) –

    File path to Stokes I .fits file

  • model_file_path (str) –

    File path to modelfit .fits file

  • stokes_q_path (str) –

    File path to Stokes Q .fits file

  • stokes_u_path (str) –

    File path to Stokes U .fits file

  • stokes_i_mod_file (str) –

    File path to Stokes I clean model .mod file

  • stokes_q_mod_file (str) –

    File path to Stokes Q clean model .mod file

  • stokes_u_mod_file (str) –

    File path to Stokes U clean model .mod file

  • model_mod_file (str) –

    File path to the modelfit .mod file

  • residual_map_path (str) –

    Path to the .fits file of the residual map (if .uvf file provided)

  • spix (list[list[float]]) –

    2d-array of spectral index data (if loaded)

  • rm (list[list[float]]) –

    2d-array of rotation measure data (if loaded)

  • turnover (list[list[float]]) –

    2d-array of turnover frequency data (if loaded)

  • turnover_flux (list[list[float]]) –

    2d-array of turnover flux density data (if loaded)

  • turnover_error (list[list[float]]) –

    2d-array of turnover frequency error data (if loaded)

  • turnover_chi_sq (list[list[float]]) –

    2d-array of turnover-fit chi-squared values

Source code in vcat/image_data.py
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
class ImageData(object):
    """
    Class to handle VLBI Image data (single image with or without polarization at one frequency)

    Attributes:
        name (str): Source name of the observation
        date (str): Date of the observation
        mjd (float): MJD of the observation
        freq (float): Frequency of the observation in Hz
        beam_maj (float): Beam Major Axis in the intrinsic image scale (usually 'mas')
        beam_min (float): Beam Minor Axis in the intrinsic image scale (usually 'mas')
        beam_pa (float): Beam position angle in degrees (North through East)
        scale (float): Conversion from degrees to the intrinsic image scale (for 'mas': 3.6e6)
        degpp (float): Degrees per pixel
        unit (str): Intrinsic Scale Unit of the image ('mas', 'arcsec', 'arcsec', 'deg')
        uvw (list[int]): uv-weighting to use for DIFMAP
        stokes_i (list[list[float]]): 2d-array of the Stokes I image
        stokes_q (list[list[float]]): 2d-array of the Stokes Q image (if polarization loaded)
        stokes_u (list[list[float]]): 2d-array of the Stokes U image (if polarization loaded)
        residual_map (list[list[float]]): 2d-array of the residual map (if .uvf file provided)
        lin_pol (list[list[float]]): 2d-array of the linear polarization
        evpa (list[list[float]]): 2d-array of the EVPA
        mask (list[list[bool]]): Image mask
        model (DataFrame): DataFrame with all components of the loaded model
        model_i (DataFrame): DataFrame with all Stokes I clean components
        model_q (DataFrame): DataFrame with all Stokes Q clean components
        model_u (DataFrame): DataFrame with all Stokes U clean components
        components (list[Component]): List of Modelfit-Components
        noise (float): Image noise in Jy, calculated using the specified 'noise_method'
        pol_noise (float): Image noise of the linear polarization image in Jy
        noise_3sigma (float): 3-sigma Image noise level in Jy
        pol_noise_3sigma (float): 3-sigma Polarization noise level in Jy
        integrated_flux_image (float): Integrated flux density of the entire image (pixel sum)
        integrated_flux_clean (float): Integrated flux density from the Stokes I clean model
        integrated_pol_flux_image (float): Integrated linearly polarized flux density of the entire image (pixel sum)
        integrated_pol_flux_clean (float): Integrated linearly polarized flux density from Stokes Q and U clean models
        evpa_average (float): Average EVPA calculated from Stokes Q and U clean models (in rad!).
        frac_pol (float): Fractional polarization of the image (integrated_flux_pol_clean/integrated_flux_clean)
        uvtaper (list[float]): Pass uvtaper parameter [fraction, uv-radius]
        ridgeline (Ridgeline): Ridgeline of the image (can be created with self.get_ridgeline())
        counter_ridgeline (Ridgline): Counter-Ridgeline of the image (can be created with self.get_ridgeline())
        file_path (str): File path to Stokes I .fits file
        model_file_path (str): File path to modelfit .fits file
        stokes_q_path (str): File path to Stokes Q .fits file
        stokes_u_path (str): File path to Stokes U .fits file
        stokes_i_mod_file (str): File path to Stokes I clean model .mod file
        stokes_q_mod_file (str): File path to Stokes Q clean model .mod file
        stokes_u_mod_file (str): File path to Stokes U clean model .mod file
        model_mod_file (str): File path to the modelfit .mod file
        residual_map_path (str): Path to the .fits file of the residual map (if .uvf file provided)
        spix (list[list[float]]): 2d-array of spectral index data (if loaded)
        rm (list[list[float]]): 2d-array of rotation measure data (if loaded)
        turnover (list[list[float]]): 2d-array of turnover frequency data (if loaded)
        turnover_flux (list[list[float]]): 2d-array of turnover flux density data (if loaded)
        turnover_error (list[list[float]]): 2d-array of turnover frequency error data (if loaded)
        turnover_chi_sq (list[list[float]]): 2d-array of turnover-fit chi-squared values

    """
    def __init__(self,
                 fits_file="",
                 uvf_file="",
                 stokes_i=[],
                 model="",
                 lin_pol=[],
                 evpa=[],
                 pol_from_stokes=True,
                 mask="",
                 ridgeline="",
                 counter_ridgeline="",
                 stokes_q="",
                 stokes_u="",
                 comp_ids=[],
                 auto_identify=True,
                 core_comp_id=0,
                 redshift=0,
                 query_redshift=True,
                 M=0,
                 model_save_dir="tmp/",
                 is_casa_model=False,
                 is_ehtim_model=False,
                 noise_method=noise_method, #choose noise method
                 mfit_err_method=mfit_err_method,
                 res_lim_method=res_lim_method,
                 uvtaper=[1,0],
                 correct_rician_bias=False,
                 error=0.05, #relative error flux densities,
                 fit_comp_polarization=False,
                 fit_comp_pol_errors=False,
                 gain_err=0.05,
                 uvw=uvw,
                 difmap_path=difmap_path):

        """
        Initializes an ImageData object to handle a full-polarization VLBI data set at one epoch and one frequency.

        Args:
            fits_file (str): Input .fits file(s) (Stokes I or full polarization, e.g. from CASA)
            uvf_file (str): Input .uvf file(s)
            stokes_i (list[list[float]]): Input of Stokes-I data as a 2d-array
            model (str): Input of modelfit .fits or .mod file (e.g., from DIFMAP), for CASA .fits model, set is_casa_model=True
            lin_pol (list[list[float]]): 2d array of linear polarized intensity values (if using, set pol_from_stokes=False)
            evpa (list[list[float]]): 2d array of Electric Vector Position Angle (EVPA) (if using, set pol_from_stokes=False)
            pol_from_stokes (bool): Choose whether to import data from fits-files or from lin_pol/evpa
            mask (list[list[bool]]): 2d-array of an image mask
            ridgeline (Ridgeline): Ridgeline of the image
            counter_ridgeline (Ridgeline): Counter ridgeline of the image.
            stokes_q (str or list[list[float]]): Input Stokes-Q .fits file or 2d array of Stokes-Q image
            stokes_u (str or list[list[float]]): Input Stokes-U .fits file or 2d array of Stokes-U image
            comp_ids (list[int]): list of integers to assign as component number (from top to bottom .mod file or .fits header)
            auto_identify (bool): If true and no comp_ids provided components will automatically be named
            core_comp_id (int): Component ID of the core component
            redshift (float): Redshift of the source
            query_redshift (bool): Choose whether to query redshift automatically from NED
            M (float): Black hole mass
            model_save_dir (str): Directory where temporary data for VCAT operations will be stored
            is_casa_model (bool): If using a CASA .fits model for 'model', set to True
            is_ehtim_model (bool): If using a ehtim .txt model file for 'model', set to True
            noise_method (str): Choose method to calculate image noise ('Histogram Fit', 'box', 'Image RMS', 'DIFMAP')
            mfit_err_method (str): Choose method to compute modelcomponent errors ('flat', 'Schinzel12', 'Weaver22')
            res_lim_method (str): Choose method to compute component resolution limit ('Kovalev05', 'Lobanov05','beam')
            correct_rician_bias (bool): Choose whether to correct polarization for Rician Bias
            error (float): Set relative error on the flux density scale
            fit_comp_polarization (bool): Choose whether to fit polarization of modelfit components
            fit_comp_pol_errors (bool): Choose whether to determine lin_pol and evpa errors for components
            difmap_path (str): Path to the folder of your DIFMAP installation
        """
        if model=="" or not os.path.exists(model):
            self.model_inp=False
        else:
            if fits_file=="":
                fits_file=model
            self.model_inp=True
        self.file_path = fits_file
        self.fits_file = fits_file
        self.lin_pol=lin_pol
        self.evpa=evpa
        self.stokes_i=stokes_i
        self.uvf_file=uvf_file
        self.difmap_path=difmap_path
        self.residual_map_path=""
        self.residual_map = []
        self.noise_method=noise_method
        self.is_casa_model=is_casa_model
        self.is_ehtim_model=is_ehtim_model
        self.model_save_dir=model_save_dir
        self.correct_rician_bias=correct_rician_bias
        self.fit_comp_pol = fit_comp_polarization
        self.fit_comp_pol_errors = fit_comp_pol_errors
        self.error=error
        self.gain_err=gain_err
        self.uvtaper=uvtaper
        self.uvw=uvw
        self.M=M
        if ridgeline=="":
            self.ridgeline=Ridgeline()
        else:
            self.ridgeline=ridgeline
        if counter_ridgeline=="":
            self.counter_ridgeline=Ridgeline()
        else:
            self.counter_ridgeline=counter_ridgeline


        if fits_file=="":
            #if no fits file was loaded try to get the dirty image
            if uvf_file!="":
                logger.warning("Only .uvf file given, will create dirty image with npix=1024 and pxsize=0.05!")
                #get dirty map from uvf file
                get_residual_map(uvf_file, "","", difmap_path=difmap_path, channel="i",
                                 save_location="/tmp/dirty_image.fits", weighting=self.uvw,
                                 npix=1024,pxsize=0.05, do_selfcal=False)
                fits_file="/tmp/dirty_image.fits"
                self.fits_file=fits_file
                self.file_path=fits_file
            else:
                self.no_fits=True

        # Read clean files in
        if self.fits_file!="":
            hdu_list=fits.open(self.fits_file)
            self.hdu_list = hdu_list
            self.no_fits=False


        self.stokes_q_path=stokes_q
        self.stokes_u_path=stokes_u
        stokes_q_path=stokes_q
        stokes_u_path=stokes_u
        #read stokes data from input files if defined
        if stokes_q != "":
            try:
                q_fits=fits.open(stokes_q)
                try:
                    stokes_q = q_fits[0].data[0, 0, :, :]
                except:
                    stokes_q = q_fits[0].data
                q_fits.close()
            except:
                stokes_q=stokes_q
        else:
            stokes_q=[]

        if stokes_u != "":
            try:
                u_fits=fits.open(stokes_u)
                try:
                    stokes_u = u_fits[0].data[0, 0, :, :]
                except:
                    stokes_u = u_fits[0].data
                u_fits.close()
            except:
                stokes_u = stokes_u
        else:
            stokes_u=[]

        self.stokes_u=stokes_u
        self.stokes_q=stokes_q

        # Set name
        self.name = hdu_list[0].header["OBJECT"]
        self.date = get_date(fits_file)
        self.mjd = Time(self.date).mjd
        self.year = Time(self.date).decimalyear
        try:
            self.freq = float(hdu_list[0].header["CRVAL3"])  # frequency in Hertz
        except:
            try:
                self.freq = float(hdu_list[0].header["FREQ"])
            except:
                self.freq = 15000000000


        #get redshift
        if redshift==0 and query_redshift:
            try:
                self.redshift = np.average(Ned.get_table(self.name, table="redshifts")["Published Redshift"])
                logger.debug(f"Redshift for {self.name} automatically determined from NED: {self.redshift}")
            except:
                self.redshift = 0.00
        else:
            self.redshift=redshift

        # Unit selection and adjustment
        self.degpp = abs(hdu_list[0].header["CDELT1"])  # degree per pixel

        if self.degpp > 0.01:
            self.unit = 'deg'
            self.scale = 1.
        elif self.degpp > 6.94e-6:
            self.unit = 'arcmin'
            self.scale = 60.
        elif self.degpp > 1.157e-7:
            self.scale = 60. * 60.
            self.unit = 'arcsec'
        else:
            self.scale = 60. * 60. * 1000.
            self.unit = 'mas'
        # FMP suggestion: add microarcseconds for possible scale

        # Set beam parameters
        try:
            # DIFMAP style
            self.beam_maj = hdu_list[0].header["BMAJ"] * self.scale
            self.beam_min = hdu_list[0].header["BMIN"] * self.scale
            self.beam_pa = hdu_list[0].header["BPA"]
        except:
            try:
                # TODO check if this is actually working!
                # CASA style
                self.beam_maj, self.beam_min, self.beam_pa, na, nb = hdu_list[1].data[0]
                self.beam_maj = self.beam_maj * 1000  # convert to mas
                self.beam_min = self.beam_min * 1000  # convert to mas
            except:
                logger.warning("No input beam information!")
                self.beam_maj = 0
                self.beam_min = 0
                self.beam_pa = 0


        # Convert Pixel into unit
        self.X = np.linspace(0, hdu_list[0].header["NAXIS1"], hdu_list[0].header["NAXIS1"],
                        endpoint=False)  # NAXIS1: number of pixels at R.A.-axis
        for j in range(len(self.X)):
            self.X[j] = (self.X[j] - hdu_list[0].header["CRPIX1"]) * hdu_list[0].header[
                "CDELT1"] * self.scale  # CRPIX1: reference pixel, CDELT1: deg/pixel
        self.X[int(hdu_list[0].header["CRPIX1"])] = 0.0

        self.Y = np.linspace(0, hdu_list[0].header["NAXIS2"], hdu_list[0].header["NAXIS2"],
                        endpoint=False)  # NAXIS2: number of pixels at Dec.-axis
        for j in range(len(self.Y)):
            self.Y[j] = (self.Y[j] - hdu_list[0].header["CRPIX2"]) * hdu_list[0].header[
                "CDELT2"] * self.scale  # CRPIX2: reference pixel, CDELT2: deg/pixel
        self.Y[int(hdu_list[0].header["CRPIX2"])] = 0.0

        self.extent = np.max(self.X), np.min(self.X), np.min(self.Y), np.max(self.Y)

        if not self.no_fits:
            self.image_data = hdu_list[0].data
            try:
                self.Z = self.image_data[0, 0, :, :]
            except:
                self.Z = self.image_data

        else:
            try:
                self.Z=self.stokes_i
            except:
                pass


        #handle model loading
        self.model_file_path = model
        if self.model_file_path=="":
            self.model_file_path=self.fits_file
        elif not isinstance(model, pd.DataFrame) and not is_fits_file(model) and not is_casa_model and not is_ehtim_model: #Careful, this may not work for CASA style .fits files!
            #this means it is a .mod file -> will create .fits file from it
            os.makedirs(model_save_dir + "mod_files_model/", exist_ok=True)
            new_model_fits=model_save_dir+"mod_files_model/" + self.name + "_" + self.date + "_" + "{:.0f}".format(self.freq/1e9).replace(".","_") + "GHz"
            if difmap_path!="" and uvf_file!="":
                # use difmap to load the model and create model .fits file and store it as model_file_path
                fold_with_beam([self.fits_file],difmap_path=self.difmap_path,
                               bmaj=self.beam_maj, bmin=self.beam_min, posa=self.beam_pa,
                               outname=new_model_fits, n_pixel=len(self.X)*2, pixel_size=self.degpp*self.scale,
                               mod_files=[model],clean_mod_files=[model], uvf_files=[uvf_file], do_selfcal=True)

            else:
                #TODO does not work for AIPS .fits!!!
                #copy the clean .fits file and write the model info to the header and store it as model_file_path
                #get model first:
                model_df = getComponentInfo(model,scale=self.scale)
                #now modify fits file
                f=fits.open(self.fits_file)
                # FITS column names
                fits_columns = ["FLUX","DELTAX","DELTAY","MAJOR AX","MINOR AX","POSANGLE","TYPE OBJ"]
                dtype=np.dtype([
                    ('FLUX', '>f4'),
                    ('DELTAX', '>f4'),
                    ('DELTAY', '>f4'),
                    ('MAJOR AX', '>f4'),
                    ('MINOR AX', '>f4'),
                    ('POSANGLE', '>f4'),
                    ('TYPE OBJ', '>f4')
                    ])


                # Manually map DataFrame columns to FITS structure
                column_mapping = {
                    "FLUX": "Flux",
                    "DELTAX": "Delta_x",
                    "DELTAY": "Delta_y",
                    "MAJOR AX": "Major_axis",
                    "MINOR AX": "Minor_axis",
                    "POSANGLE": "PA",
                    "TYPE OBJ": "Typ_obj",
                }

                # Ensure correct order and match dtype
                new_data_array = np.array(
                    [tuple(df[column_mapping[col]] for col in fits_columns) for _, df in model_df.iterrows()],
                    dtype=dtype  # Ensure the same dtype as the original FITS table
                )

                # Overwrite the FITS table with the new structured array
                f[1].data = new_data_array
                f[1].header['XTENSION'] = 'BINTABLE'
                f.writeto(new_model_fits+".fits",overwrite=True)
                f.close()

            self.model_file_path = new_model_fits + ".fits"
            model = self.model_file_path

        #overwrite fits image data with stokes_i input if given
        if not stokes_i==[]:
            self.Z=stokes_i

        #read in polarization input

        # check if FITS file contains more than just Stokes I
        self.only_stokes_i = False
        if hdu_list[0].data.shape[0] == 1:
            self.only_stokes_i = True
        elif len(hdu_list[0].data.shape) == 2:
            self.only_stokes_i = True
        if (np.shape(self.Z) == np.shape(stokes_q) and np.shape(self.Z) == np.shape(stokes_u) and
                        np.shape(stokes_q) == np.shape(stokes_u)):
            self.only_stokes_i = True #in this case override the polarization data with the data that was input to Q and U

        if self.only_stokes_i:
            #DIFMAP Style
            pols=1
            # Check if linpol/evpa/stokes_i have same dimensions!
            dim_wrong = True
            if pol_from_stokes:
                if (np.shape(self.Z) == np.shape(stokes_q) and np.shape(self.Z) == np.shape(stokes_u) and
                        np.shape(stokes_q) == np.shape(stokes_u)):
                    dim_wrong = False
                    self.stokes_q=stokes_q
                    self.stokes_u=stokes_u
                else:
                    self.lin_pol = np.zeros(np.shape(self.Z))
                    self.evpa = np.zeros(np.shape(self.Z))
            else:
                if (np.shape(self.Z) == np.shape(lin_pol) and np.shape(self.Z) == np.shape(evpa) and
                        np.shape(lin_pol) == np.shape(evpa)):
                    dim_wrong = False
                    self.lin_pol=lin_pol
                    self.evpa=evpa
                else:
                    self.lin_pol=np.zeros(np.shape(self.Z))
                    self.evpa=np.zeros(np.shape(self.Z))
            try:
                self.image_data[0, 0, :, :] = self.Z
            except:
                self.image_data = self.Z
        else:
            #CASA STYLE
            pols=3
            dim_wrong=False
            self.stokes_q=hdu_list[0].data[1,0,:,:]
            self.stokes_u=hdu_list[0].data[2,0,:,:]
            self.image_data[1, 0, :, :] = self.stokes_q
            self.image_data[2, 0, :, :] = self.stokes_u

        if pol_from_stokes and not dim_wrong:
            self.lin_pol = np.sqrt(self.stokes_q ** 2 + self.stokes_u ** 2)
            self.evpa = 0.5 * np.arctan2(self.stokes_u, self.stokes_q)
            #shift to 0-180 (only positive)
            self.evpa[np.where(self.evpa<0)] = self.evpa[np.where(self.evpa<0)]+np.pi

        try:
            self.difmap_noise = float(hdu_list[0].header["NOISE"])
        except:
            self.difmap_noise = 0


        try:
            q_fits=fits.open(stokes_q_path)
            u_fits=fits.open(stokes_u_path)
            self.difmap_pol_noise = np.sqrt(float(q_fits[0].header["NOISE"])**2+float(u_fits[0].header["NOISE"])**2)
            q_fits.close()
            u_fits.close()
        except:
            self.difmap_pol_noise = 0

        #calculate image noise according to the method selected
        logger.debug("Calculating Stokes I noise")
        unused, levs_i = get_sigma_levs(self.Z, 1,noise_method=self.noise_method,noise=self.difmap_noise) #get noise for stokes i

        if np.sum(self.lin_pol)!=0:
            logger.debug("Calculating Pol noise")
            unused, levs_pol = get_sigma_levs(self.lin_pol, 1,noise_method=self.noise_method,noise=self.difmap_noise) #get noise for polarization
        else:
            levs_pol=[0]

        self.noise = levs_i[0]
        self.pol_noise = levs_pol[0]

        #calculate integrated total flux in image
        self.integrated_flux_image = JyPerBeam2Jy(np.sum(self.Z), self.beam_maj, self.beam_min, self.degpp * self.scale)

        #calculate integrated pol flux in image
        self.integrated_pol_flux_image = JyPerBeam2Jy(np.sum(self.lin_pol),self.beam_maj,self.beam_min,self.degpp*self.scale)

        if not is_casa_model and not self.is_ehtim_model:
            try:
                #TODO basic checks if file is valid
                self.model=getComponentInfo(self.model_file_path, scale=self.scale)
                #write .mod file from .fits input
                os.makedirs(model_save_dir,exist_ok=True)
                os.makedirs(model_save_dir+"mod_files_model/",exist_ok=True)
                if self.model is not None:
                    self.model_mod_file=model_save_dir+"mod_files_model/" + self.name + "_" + self.date + "_" + "{:.0f}".format(self.freq/1e9).replace(".","_") + "GHz.mod"
                    write_mod_file(self.model, self.model_mod_file, freq=self.freq)
            except:
                logger.warning("FITS file does not contain model extension!")
        if self.is_ehtim_model:
            os.makedirs(model_save_dir, exist_ok=True)
            os.makedirs(model_save_dir + "mod_files_clean", exist_ok=True)
            os.makedirs(model_save_dir + "mod_files_q", exist_ok=True)
            os.makedirs(model_save_dir + "mod_files_u", exist_ok=True)
            self.stokes_i_mod_file = model_save_dir + "mod_files_clean/" + self.name + "_" + self.date + "_" + "{:.0f}".format(
                self.freq / 1e9).replace(".", "_") + "GHz.mod"
            write_mod_file_from_ehtim(self,channel="i", export=self.stokes_i_mod_file)
            self.stokes_q_mod_file = model_save_dir + "mod_files_q/" + self.name + "_" + self.date + "_" + "{:.0f}".format(
                self.freq / 1e9).replace(".", "_") + "GHz.mod"
            write_mod_file_from_ehtim(self,channel="q", export=self.stokes_q_mod_file)
            self.stokes_u_mod_file = model_save_dir + "mod_files_u/" + self.name + "_" + self.date + "_" + "{:.0f}".format(
                self.freq / 1e9).replace(".", "_") + "GHz.mod"
            write_mod_file_from_ehtim(self,channel="u", export=self.stokes_u_mod_file)
            self.model = getComponentInfo(self.stokes_i_mod_file, scale=self.scale,year=self.year,mjd=self.mjd,date=self.date)
            self.model_mod_file=self.stokes_i_mod_file

        elif is_casa_model:
            #TODO basic checks if file is valid
            os.makedirs(model_save_dir,exist_ok=True)
            os.makedirs(model_save_dir+"mod_files_clean", exist_ok=True)
            os.makedirs(model_save_dir+"mod_files_q", exist_ok=True)
            os.makedirs(model_save_dir + "mod_files_u", exist_ok=True)
            self.stokes_i_mod_file=model_save_dir+"mod_files_clean/" + self.name + "_" + self.date + "_" + "{:.0f}".format(self.freq/1e9).replace(".","_") + "GHz.mod"
            self.write_mod_file_from_casa(channel="i", export=self.stokes_i_mod_file)
            self.stokes_q_mod_file=model_save_dir+"mod_files_q/"+ self.name + "_" + self.date + "_" + "{:.0f}".format(self.freq/1e9).replace(".","_") + "GHz.mod"
            self.write_mod_file_from_casa(channel="q", export=self.stokes_q_mod_file)
            self.stokes_u_mod_file=model_save_dir+"mod_files_u/"+ self.name + "_" + self.date + "_" + "{:.0f}".format(self.freq/1e9).replace(".","_") + "GHz.mod"
            self.write_mod_file_from_casa(channel="u", export=self.stokes_u_mod_file)
            self.model = getComponentInfo(self.stokes_i_mod_file, scale=self.scale)
            self.model_mod_file = self.stokes_i_mod_file
        try:
            os.makedirs(model_save_dir+"mod_files_clean", exist_ok=True)
            os.makedirs(model_save_dir+"mod_files_q", exist_ok=True)
            os.makedirs(model_save_dir+"mod_files_u", exist_ok=True)
            #try to import model which is attached to the main .fits file
            model_i = getComponentInfo(fits_file, scale=self.scale)
            self.model_i = model_i
            self.stokes_i_mod_file=model_save_dir+"mod_files_clean/"+ self.name + "_" + self.date + "_" + "{:.0f}".format(self.freq/1e9).replace(".","_") + "GHz.mod"
            write_mod_file(model_i, self.stokes_i_mod_file, freq=self.freq)
            #load stokes q and u clean models
            self.model_q=getComponentInfo(stokes_q_path, scale=self.scale)
            self.stokes_q_mod_file=model_save_dir+"mod_files_q/"+ self.name + "_" + self.date + "_" + "{:.0f}".format(self.freq/1e9).replace(".","_") + "GHz.mod"
            write_mod_file(self.model_q, self.stokes_q_mod_file, freq=self.freq)
            self.model_u=getComponentInfo(stokes_u_path, scale=self.scale)
            self.stokes_u_mod_file=model_save_dir+"mod_files_u/"+ self.name + "_" + self.date + "_" + "{:.0f}".format(self.freq/1e9).replace(".","_") + "GHz.mod"
            write_mod_file(self.model_u, self.stokes_u_mod_file, freq=self.freq)
        except:
            pass

        #calculate residual map if uvf and modelfile present
        if self.uvf_file!="" and self.model_file_path!="" and not is_casa_model and  self.difmap_path!="":
            os.makedirs(model_save_dir+"residual_maps", exist_ok=True)
            self.residual_map_path = model_save_dir + "residual_maps/" + self.name + "_" + self.date + "_" + "{:.0f}".format(self.freq / 1e9).replace(".",
                                                                                                                 "_") + "GHz_residual.fits"

            get_residual_map(self.uvf_file,self.stokes_i_mod_file,self.stokes_i_mod_file,
                             difmap_path=self.difmap_path,
                             save_location=self.residual_map_path,weighting=self.uvw,
                             npix=len(self.X),pxsize=self.degpp*self.scale)

            self.residual_map=fits.open(self.residual_map_path)[0].data[0,0,:,:]

        #save modelfit (or clean) components as Component objects
        self.components=[]

        if self.model_inp:
            #only do this if a model was specified explicitely
            for ind,comp in self.model.reset_index().iterrows():
                #use provided comp_id
                try:
                    comp_id=comp_ids[ind]
                except:
                    #assign automatic comp_id
                    if auto_identify:
                        comp_id=ind
                    else:
                        comp_id=-1

                #check if component is the core component
                if comp_id==core_comp_id:
                    is_core=True
                else:
                    is_core=False

                #calculate component SNR
                if self.uvf_file!="" and self.difmap_path!="":
                    S_p, rms = get_comp_peak_rms(comp["Delta_x"]*self.scale,comp["Delta_y"]*self.scale,
                                                 self.fits_file,self.uvf_file,self.model_mod_file,self.stokes_i_mod_file,
                                                 weighting=self.uvw, difmap_path=self.difmap_path)
                    comp_snr = S_p/rms
                else:
                    if ind == 0:
                        logger.warning('No .uvfits file or difmap path provided. Calculating modelfit component SNR based on the clean map only.')
                    # TODO: use .fits file from Gaussian modelfit instead of clean map
                    S_p = self.get_pixel_value(comp["Delta_x"]*self.scale,
                                                   comp["Delta_y"]*self.scale)
                    rms=self.noise
                    comp_snr = S_p/rms

                component=Component(comp["Delta_x"],comp["Delta_y"],comp["Major_axis"],comp["Minor_axis"],
                                    comp["PA"],comp["Flux"],self.date,self.mjd,Time(self.mjd,format="mjd").decimalyear,component_number=comp_id,
                                    redshift=redshift, is_core=is_core,beam_maj=self.beam_maj,beam_min=self.beam_min,beam_pa=self.beam_pa,
                                    freq=self.freq,noise=rms, scale=self.scale, snr=comp_snr,error_method=mfit_err_method,
                                    res_lim_method=res_lim_method,gain_err=self.gain_err)
                self.components.append(component)

            #set core
            self.set_core_component(core_comp_id)
            if self.uvf_file!="" and fit_comp_polarization:
                logger.debug("Retrieving polarization information for modelfit components.")
                self.fit_comp_polarization()
            else:
                if fit_comp_polarization:
                    logger.warning("Trying to fit component polarization, but no uvf file loaded!")
                else:
                    logger.debug("Not fitting component polarization")


        hdu_list.close()

        #calculate cleaned flux density from mod files
        #first stokes I
        try:
            self.integrated_flux_clean=total_flux_from_mod(self.model_save_dir+"mod_files_clean/"  + self.name + "_" +
                                                           self.date + "_" + "{:.0f}".format(self.freq/1e9).replace(".","_") + "GHz.mod")
        except:
            self.integrated_flux_clean = 0
        #and then polarization
        try:
            flux_q=total_flux_from_mod(self.model_save_dir+"mod_files_q/" + self.name + "_" + self.date + "_" +
                                       "{:.0f}".format(self.freq/1e9).replace(".","_") + "GHz.mod")
            flux_u=total_flux_from_mod(self.model_save_dir+"mod_files_u/" + self.name + "_" + self.date + "_" +
                                       "{:.0f}".format(self.freq/1e9).replace(".","_") + "GHz.mod")
            self.integrated_pol_flux_clean=np.sqrt(flux_u**2+flux_q**2)
            self.frac_pol = self.integrated_pol_flux_clean / self.integrated_flux_clean
            self.evpa_average = 0.5*np.arctan2(flux_u,flux_q)
        except:
            self.integrated_pol_flux_clean=0
            self.frac_pol = 0

        #correct rician bias
        if correct_rician_bias:
            lin_pol_sqr = (self.lin_pol ** 2 - self.pol_noise ** 2)
            lin_pol_sqr[lin_pol_sqr < 0.0] = 0.0
            self.lin_pol = np.sqrt(lin_pol_sqr)

        # initialize mask
        if len(mask)==0:
            self.mask = np.zeros_like(self.Z, dtype=bool)
            #test masking
            #self.mask[0:200]=np.ones_like(self.Z[0:200],dtype=bool)
            #self.masking(mask_type="cut_left",args=-200)
            #set mask where Image is None
            self.mask[np.isnan(self.Z)]=True
        else:
            if np.shape(mask) != np.shape(self.Z):
                logger.warning("Mask input format invalid, Mask reset to no mask.")
                self.mask = np.zeros_like(self.Z, dtype=bool)
            else:
                self.mask=mask

        # additional parameters only used for spectral index type data
        self.is_spix=False
        self.spix=[]
        self.spix_vmin=-3
        self.spix_vmax=5

        #additional parameter only used for rotation measure data
        self.is_rm=False
        self.rm=[]
        self.rm_vmin=""
        self.rm_vmax=""

        # additional parameter only used for Spectral turnover data
        self.is_turnover = False
        self.turnover = []
        self.turnover_flux = []
        self.turnover_error = []
        self.turnover_chi_sq = []

    #print function for ImageData
    def __str__(self):
        output=["\n"]
        try:
            freq_ghz="{:.1f}".format(self.freq*1e-9)
            output.append(f"Image of the source {self.name} at frequency {freq_ghz} GHz on {self.date} \n")
            output.append(f"    Total cleaned flux: {self.integrated_flux_clean*1000:.3f} mJy \n")
            output.append(f"    Image Noise: {self.noise*1000:.3f} mJy using method '{self.noise_method}'\n")

            #polarization info
            if np.sum(self.lin_pol)!=0 and np.sum(self.evpa)!=0:
                #print polarization info if pol data was loaded
                output.append("Polarization information:\n")
                output.append(f"    Pol Flux: {self.integrated_pol_flux_clean*1000:.3f} mJy ({self.frac_pol*100:.2f}%)\n")
                output.append(f"    Pol Noise: {self.pol_noise*1000:.3f} mJy using method '{self.noise_method}'\n")
                output.append(f"    Average EVPA direction: {self.evpa_average/np.pi*180:.2f}°\n")
            else:
                output.append("No polarization data loaded.\n")

            #model info
            if self.model_file_path!=self.fits_file:
                output.append("Model information: \n")
            else:
                output.append("No model loaded. Clean model info: \n")
            model_flux = total_flux_from_mod(self.model_mod_file)
            num_comps = len(self.model)
            output.append(f"    Model Flux: {model_flux*1000:.3f} mJy \n")
            output.append(f"    Number of Components: {num_comps}")

            return "".join(output)
        except:
            return "No data loaded yet."

    def write_mod_file_from_casa(self,channel="i",export="export.mod"):

        """Writes a .mod file from a CASA exported .fits model file.
            Args:
                file_path: File path to a .fits model file as exported from a CASA .model file (e.g. with exportfits() in CASA)
                channel: Choose the Stokes channel to use (options: "i","q","u","v")
                export: File path where to write the .mod file

            Returns:
                Nothing, but writes a .mod file to export
            """

        if channel == "i":
            clean_map = self.Z
        elif channel == "q":
            clean_map = self.stokes_q
        elif channel == "u":
            clean_map = self.stokes_u
        else:
            raise Exception("Please enter a valid channel (i,q,u)")

        # read out clean components from pixel map
        delta_x = []
        delta_y = []
        flux = []
        zeros = []
        for i in range(len(self.X)):
            for j in range(len(self.Y)):
                if clean_map[j][i] > 0:
                    delta_x.append(self.X[i] / self.scale)
                    delta_y.append(self.Y[j] / self.scale)
                    flux.append(clean_map[j][i])
                    zeros.append(0.0)

        # create model_df
        model_df = pd.DataFrame(
            {'Flux': flux,
             'Delta_x': delta_x,
             'Delta_y': delta_y,
             'Major_axis': zeros,
             'Minor_axis': zeros,
             'PA': zeros,
             'Typ_obj': zeros
             })

        # create mod file
        write_mod_file(model_df, export, self.freq, self.scale)

    def get_pixel_value(self,x,y,image="stokes_i"):
        """
        Get value of a specific pixel from an image

        Args:
            x (float): X position in mas
            y (float): Y position in mas
            image (str): Select Image to get value from ('stokes_i','stokes_q',"stokes_u","lin_pol","evpa")

        Returns:

        """
        Xind=closest_index(self.X,x)
        Yind=closest_index(self.Y,y)

        if image=="stokes_i":
            return self.Z[Yind,Xind]
        elif image=="stokes_q":
            return self.stokes_q[Yind,Xind]
        elif image=="stokes_q":
            return self.stokes_q[Yind,Xind]
        elif image=="stokes_u":
            return self.stokes_u[Yind,Xind]
        elif image=="lin_pol":
            return self.lin_pol[Yind,Xind]
        elif image=="evpa":
            return self.evpa[Yind,Xind]

    def copy(self):
        """
        Create copy of the current ImageData object

        Returns:
            image (ImageData): Copied image
        """
        return copy.copy(self)

    def export(self,outputfile,polarization="I"):
        """
        Function to export fits file

        Args:
            outputfile (str): Name/path of the intended output file
            polarization (str): Polarization to export ('I','Q','U')
        """
        if polarization=="I":
            os.system(f"cp {self.file_path} {outputfile}")
            logger.info(f"Stokes {polarization} succesfully exported to {outputfile}.")
        elif polarization=="Q":
            if self.stokes_q_path=="":
                logger.info(f"Stokes {polarization} succesfully exported to {outputfile}.")
            else:
                os.system(f"cp {self.stokes_q_path} {outputfile}")
                logger.info(f"Stokes {polarization} succesfully exported to {outputfile}.")
        elif polarization=="U":
            if self.stokes_u_path=="":
                logger.info(f"Stokes {polarization} succesfully exported to {outputfile}.")
            else:
                os.system(f"cp {self.stokes_u_path} {outputfile}")
                logger.info(f"Stokes {polarization} succesfully exported to {outputfile}.")

    def regrid(self,npix="",pixel_size="",useDIFMAP=True,mask_outside=False):
        """
        This method regrids the image in full polarization

        Args:
            npix (int): Number of pixels in ONE direction
            pixel_size (float): Size of pixel in image scale units (usually mas)
            useDIFMAP (bool): Choose whether to regrid using DIFMAP or not
            mask_outside (bool): Choose whether new image ares created through regridding will be masked automatically (bool)

        Returns:
            regridded ImageData object
        """
        logger.debug("Regridding Image")

        if len(self.X)==npix and len(self.Y)==npix and pixel_size==self.degpp*self.scale:
            return self

        n2 = len(self.X)
        n1 = len(self.Y)

        # Original grid (centered)
        x_old = (np.arange(n2) - (n2 - 1) / 2) * self.degpp * self.scale
        y_old = (np.arange(n1) - (n1 - 1) / 2) * self.degpp * self.scale

        # New grid (centered)
        x_new = (np.arange(npix) - (npix - 1) / 2) * pixel_size
        y_new = (np.arange(npix) - (npix - 1) / 2) * pixel_size

        # Generate new grid coordinates
        X_new, Y_new = np.meshgrid(x_new, y_new)
        points = np.array([Y_new.ravel(), X_new.ravel()]).T

        # define interpolator
        def interpolator(image,fill_value=0):
            interpolator = RegularGridInterpolator((y_old, x_old), image, method='linear', bounds_error=False,
                                                   fill_value=fill_value)
            return interpolator

        # regrid mask
        if mask_outside==True:
            fill_value=1
        else:
            fill_value=0


        new_mask = interpolator(self.mask, fill_value)(points).reshape(npix, npix)  # flags new points automatically
        new_mask[new_mask < 0.5] = False
        new_mask[new_mask >= 0.5] = True

        if self.uvf_file=="" or useDIFMAP==False:
            # Interpolate values at new grid points
            new_image_i = interpolator(self.Z)(points).reshape(npix, npix)

            #try polarization
            try:
                new_image_q = interpolator(self.stokes_q)(points).reshape(npix, npix)
                new_image_u = interpolator(self.stokes_u)(points).reshape(npix, npix)
            except:
                logger.warning("Unable to regrid polarization, probably no polarization loaded")


            # write outputs to the fits files
            if self.only_stokes_i:
                # this means DIFMAP style fits image
                with fits.open(self.fits_file) as f:
                    #overwrite image data
                    f[0].data = np.zeros((f[0].data.shape[0], f[0].data.shape[1], npix, npix))
                    f[0].data[0, 0, :, :] = new_image_i
                    new_stokes_i_fits = self.model_save_dir+"mod_files_clean/" + self.name + "_" + self.date + "_" + "{:.0f}".format(self.freq/1e9).replace(".","_") + "GHz.fits"
                    try:
                        f[1].header['XTENSION'] = 'BINTABLE' #This is a bug fix that is needed for some .fits files, otherwise writeto throws an error
                    except:
                        pass
                    #modify header parameters to new npix and pixelsize
                    f[0].header["NAXIS1"]=npix
                    f[0].header["NAXIS2"]=npix
                    f[0].header["CDELT1"]=-pixel_size/self.scale
                    f[0].header["CDELT2"]=pixel_size/self.scale
                    f[0].header["CRPIX1"]=int(f[0].header["CRPIX1"]/len(self.X)*npix)
                    f[0].header["CRPIX2"]=int(f[0].header["CRPIX2"]/len(self.X)*npix)
                    f.writeto(new_stokes_i_fits, overwrite=True)

                if len(self.stokes_q) > 0:
                    with fits.open(self.stokes_q_path) as f:
                        # overwrite image data
                        f[0].data = np.zeros((f[0].data.shape[0], f[0].data.shape[1], npix, npix))
                        f[0].data[0, 0, :, :] = new_image_q
                        new_stokes_q_fits = self.model_save_dir+"mod_files_q/" + self.name + "_" + self.date + "_" + "{:.0f}".format(self.freq/1e9).replace(".","_") + "GHz.fits"
                        try:
                            f[1].header['XTENSION'] = 'BINTABLE'  # This is a bug fix that is needed for some .fits files, otherwise writeto throws an error
                        except:
                            pass
                        # modify header parameters to new npix and pixelsize
                        f[0].header["NAXIS1"] = npix
                        f[0].header["NAXIS2"] = npix
                        f[0].header["CDELT1"] = -pixel_size / self.scale
                        f[0].header["CDELT2"] = pixel_size / self.scale
                        f[0].header["CRPIX1"] = int(f[0].header["CRPIX1"] / len(self.X) * npix)
                        f[0].header["CRPIX2"] = int(f[0].header["CRPIX2"] / len(self.X) * npix)
                        f.writeto(new_stokes_q_fits, overwrite=True)
                else:
                    new_stokes_q_fits=""


                if len(self.stokes_u) > 0:
                    with fits.open(self.stokes_u_path) as f:
                        # overwrite image data
                        f[0].data = np.zeros((f[0].data.shape[0], f[0].data.shape[1], npix, npix))
                        f[0].data[0, 0, :, :] = new_image_u
                        new_stokes_u_fits = self.model_save_dir+"mod_files_u/" + self.name + "_" + self.date + "_" + "{:.0f}".format(self.freq/1e9).replace(".","_") + "GHz.fits"
                        try:
                            f[1].header['XTENSION'] = 'BINTABLE'  # This is a bug fix that is needed for some .fits files, otherwise writeto throws an error
                        except:
                            pass
                        # modify header parameters to new npix and
                        # pixelsize
                        f[0].header["NAXIS1"] = npix
                        f[0].header["NAXIS2"] = npix
                        f[0].header["CDELT1"] = -pixel_size / self.scale
                        f[0].header["CDELT2"] = pixel_size / self.scale
                        f[0].header["CRPIX1"] = int(f[0].header["CRPIX1"] / len(self.X) * npix)
                        f[0].header["CRPIX2"] = int(f[0].header["CRPIX2"] / len(self.X) * npix)
                        f.writeto(new_stokes_u_fits, overwrite=True)
                else:
                    new_stokes_u_fits = ""

            else:
                # CASA style
                f = fits.open(self.fits_file)
                # overwrite image data
                f[0].data = np.zeros((f[0].data.shape[0], f[0].data.shape[1], npix, npix))
                f[0].data[0, 0, :, :] = new_image_i
                f[0].data[1, 0, :, :] = new_image_q
                f[0].data[2, 0, :, :] = new_image_u
                f[0].header["NAXIS1"] = npix
                f[0].header["NAXIS2"] = npix
                f[0].header["CDELT1"] = -pixel_size / self.scale
                f[0].header["CDELT2"] = pixel_size / self.scale
                f[0].header["CRPIX1"] = int(f[0].header["CRPIX1"] / len(self.X) * npix)
                f[0].header["CRPIX2"] = int(f[0].header["CRPIX2"] / len(self.X) * npix)
                new_stokes_i_fits = self.model_save_dir+"mod_files_clean/" + self.name + "_" + self.date + "_" + "{:.0f}".format(self.freq/1e9).replace(".","_") + "GHz.fits"
                f.writeto(new_stokes_i_fits, overwrite=True, output_verify='ignore')
                new_stokes_q_fits=""
                new_stokes_u_fits=""

            #if model loaded try regridding as well
            try:
                if not self.model_file_path == self.fits_file:
                    if not self.model_file_path=="":
                        with fits.open(self.model_file_path) as f:
                            new_image_model = interpolator(f[0].data[0, 0, :, :])(points).reshape(npix,npix)
                            f[0].data = np.zeros((f[0].data.shape[0], f[0].data.shape[1], npix, npix))
                            f[0].data[0, 0, :, :] = new_image_model
                            new_model_fits = self.model_save_dir + "mod_files_model/" + self.name + "_" + self.date + "_" + "{:.0f}".format(
                    self.freq / 1e9).replace(".", "_") + "GHz.fits"
                            try:
                                f[1].header['XTENSION'] = 'BINTABLE'  # This is a bug fix that is needed for some .fits files, otherwise writeto throws an error
                            except:
                                pass
                            f[0].header["NAXIS1"] = npix
                            f[0].header["NAXIS2"] = npix
                            f[0].header["CDELT1"] = -pixel_size / self.scale
                            f[0].header["CDELT2"] = pixel_size / self.scale
                            f[0].header["CRPIX1"]=int(f[0].header["CRPIX1"]/len(self.X)*npix)
                            f[0].header["CRPIX2"]=int(f[0].header["CRPIX2"]/len(self.X)*npix)
                            f.writeto(new_model_fits, overwrite=True)
                    else:
                        new_model_fits=""
                else:
                    new_model_fits=new_stokes_i_fits
            except:
                logger.warning("Model not regridded, probably no model loaded.")
                new_model_fits=""

        else:
            npix=npix*2 #DIFMAP npix convention
            #Using DIFMAP
            # restore Stokes I
            new_stokes_i_fits = self.stokes_i_mod_file.replace(".mod", "")

            fold_with_beam([self.fits_file], difmap_path=self.difmap_path,
                           bmaj=self.beam_maj, bmin=self.beam_min, posa=self.beam_pa, shift_x=0, shift_y=0,
                           channel="i", output_dir=self.model_save_dir + "mod_files_clean", outname=new_stokes_i_fits,
                           n_pixel=npix, pixel_size=pixel_size,
                           mod_files=[self.stokes_i_mod_file],clean_mod_files=[self.stokes_i_mod_file], uvf_files=[self.uvf_file],
                           weighting=self.uvw,uvtaper=self.uvtaper)

            new_stokes_i_fits += ".fits"

            # try to restore modelfit if it is there
            try:
                if not self.model_file_path == self.fits_file:
                    new_model_fits = self.model_mod_file.replace(".mod", "")

                    fold_with_beam([self.fits_file], difmap_path=self.difmap_path,
                                   bmaj=self.beam_maj, bmin=self.beam_min, posa=self.beam_pa, shift_x=0, shift_y=0,
                                   channel="i", output_dir=self.model_save_dir + "mod_files_model",
                                   outname=new_model_fits,
                                   n_pixel=npix, pixel_size=pixel_size,
                                   mod_files=[self.model_mod_file],clean_mod_files=[self.stokes_i_mod_file], uvf_files=[self.uvf_file],
                                   weighting=self.uvw,uvtaper=self.uvtaper)

                    new_model_fits += ".fits"
                else:
                    new_model_fits = new_stokes_i_fits
            except:
                new_model_fits = ""

            # try to restore polarization as well if it is there
            try:
                new_stokes_q_fits = self.stokes_q_mod_file.replace(".mod", "")
                new_stokes_u_fits = self.stokes_u_mod_file.replace(".mod", "")

                fold_with_beam([self.fits_file], difmap_path=self.difmap_path,
                               bmaj=self.beam_maj, bmin=self.beam_min, posa=self.beam_pa, shift_x=0, shift_y=0,
                               channel="q", output_dir=self.model_save_dir + "mod_files_q", outname=new_stokes_q_fits,
                               n_pixel=npix, pixel_size=pixel_size,
                               mod_files=[self.stokes_q_mod_file],clean_mod_files=[self.stokes_i_mod_file], uvf_files=[self.uvf_file],
                               weighting=self.uvw,uvtaper=self.uvtaper)

                new_stokes_q_fits += ".fits"

                fold_with_beam([self.fits_file], difmap_path=self.difmap_path,
                               bmaj=self.beam_maj, bmin=self.beam_min, posa=self.beam_pa, shift_x=0, shift_y=0,
                               channel="u", output_dir=self.model_save_dir + "mod_files_u", outname=new_stokes_u_fits,
                               n_pixel=npix, pixel_size=pixel_size,
                               mod_files=[self.stokes_u_mod_file], clean_mod_files=[self.stokes_i_mod_file],uvf_files=[self.uvf_file],
                               weighting=self.uvw,uvtaper=self.uvtaper)

                new_stokes_u_fits += ".fits"

            except:
                new_stokes_q_fits = ""
                new_stokes_u_fits = ""

        if not self.model_inp:
            new_model_fits = ""

        return ImageData(fits_file=new_stokes_i_fits,
                         uvf_file=self.uvf_file,
                         stokes_q=new_stokes_q_fits,
                         stokes_u=new_stokes_u_fits,
                         mask=new_mask,
                         ridgeline=self.ridgeline,
                         redshift=self.redshift,
                         counter_ridgeline=self.counter_ridgeline,
                         noise_method=self.noise_method,
                         model_save_dir=self.model_save_dir,
                         model=new_model_fits,
                         correct_rician_bias=self.correct_rician_bias,
                         comp_ids=self.get_model_info()[0],
                         core_comp_id=self.get_model_info()[1],
                         difmap_path=self.difmap_path,
                         fit_comp_polarization=self.fit_comp_pol,
                         fit_comp_pol_errors=self.fit_comp_pol_errors,
                         uvw=self.uvw,
                         uvtaper=self.uvtaper)

    def plot(self,show=True,savefig="",**kwargs):
        defaults = {
            "stokes_i_sigma_cut": 3,
            "plot_mode": "stokes_i",
            "im_colormap": False,
            "contour": True,
            "contour_color": 'grey',
            "contour_cmap": None,
            "contour_alpha": 1,
            "contour_width": 0.5,
            "im_color": '',
            "do_colorbar": False,
            "plot_ridgeline": False,
            "ridgeline_color": "red",
            "plot_counter_ridgeline": False,
            "counter_ridgeline_color": "red",
            "plot_line" : "",
            "line_color" : "black",
            "line_width" : 2,
            "plot_polar": False,
            "plot_beam": True,
            "beam_color": "grey",
            "plot_model": False,
            "component_color": "black",
            "plot_comp_ids": False,
            "plot_comp_evpas": False,
            "plot_clean": False,
            "plot_mask": False,
            "xlim": [],
            "ylim": [],
            "plot_evpa": False,
            "evpa_width": 1.5,
            "evpa_len": -1,
            "lin_pol_sigma_cut": 3,
            "evpa_distance": -1,
            "fractional_evpa_distance": 0.02,
            "rotate_evpa": 0,
            "colorbar_loc": "right",
            "evpa_color": "white",
            "title": "",
            "background_color": "white",
            "font_size_axis_title": 8,
            "font_size_axis_tick": 6,
            "rcparams": {}
        }

        params = {**defaults, **kwargs}
        plot=FitsImage(self, **params)
        if savefig!="":
            plot.export(savefig)
        if show:
            plt.show()

        return plot

    def align(self,image_data2,masked_shift=True,method="cross_correlation",beam_arg="common", auto_regrid=False,
              useDIFMAP=True,comp_ids="",weight_by_comp_err=True):
        """
        This function aligns the image to a reference image (image_data2).

        Args:
            image_data2 (ImageData): ImageData object of the reference image
            masked_shift (bool): Choose whether to consider the image masks for alignment
            method: Choose alignment method (Options: 'cross_correlation', 'brightest', 'modelcomp')
            beam_arg (str): Choose which common beam to use (Options: 'common', 'max', 'min'), only applied when auto_regrid=True
            auto_regrid (bool): Choose whether to automatically regrid and restore both images to a common beam and image size.
            useDIFMAP (bool): Choose whether to use DIFMAP for image operations or not.
            comp_ids (int or list[int]): Component IDs to use for the alignment in 'modelcomp' mode.

        Returns:
            image (ImageData): aligned imaged (possibly also regridded and restored if auto_regrid=True).
        """
        if self==image_data2:
            return self

        if ((self.Z.shape != image_data2.Z.shape) or self.degpp != image_data2.degpp) or auto_regrid:
            if auto_regrid:
                # if this is selected will automatically convolve with common beam and regrid
                logger.info("Automatically regridding image to minimum pixelsize, smallest FOV and common beam")

                #determin common image parameters
                pixel_size=np.min([self.degpp*self.scale,image_data2.degpp*image_data2.scale])
                #TODO: change this to maximum FoV? (to make sure no information is lost in any map)
                # aligning this also with the edit by FMP in image_cube.py regrid function
                min_fov=np.min([self.degpp*len(self.X)*self.scale,image_data2.degpp*len(image_data2.X)*self.scale])
                npix=int(min_fov/pixel_size)

                #get common beam
                common_beam=get_common_beam([self.beam_maj,image_data2.beam_maj],
                                            [self.beam_min,image_data2.beam_min],
                                            [self.beam_pa,image_data2.beam_pa],arg=beam_arg)

                #regrid images
                image_self = self.copy()
                # convolve with common beam
                image_self = image_self.regrid(npix, pixel_size, useDIFMAP=useDIFMAP)
                image_self = image_self.restore(common_beam[0], common_beam[1], common_beam[2], useDIFMAP=useDIFMAP)

                # same for image 2
                image_data2 = image_data2.regrid(npix, pixel_size, useDIFMAP=useDIFMAP)
                image_data2 = image_data2.restore(common_beam[0], common_beam[1], common_beam[2], useDIFMAP=useDIFMAP)



            else:
                if not (method=="modelcomp" or method=="model_comp" or method=="model"):
                    logger.warning("Images do not have the same npix and pixelsize, please regrid first or use auto_regrid=True.")
                    return self
                else:
                    image_self=self.copy()
        else:
            image_self=self.copy()

        if method=="cross_correlation" or method=="crosscorrelation":
            if (np.all(image_data2.mask==False) and np.all(image_self.mask==False)) or masked_shift==False:

                shift,error,diffphase = phase_cross_correlation(image_data2.Z,image_self.Z,upsample_factor=100)
                logger.info('will apply shift (x,y): [{} : {}] {}'.format(-shift[1]*image_self.scale*image_self.degpp, shift[0]*image_self.scale*image_self.degpp,self.unit))
            else:
                # contrary to the skikit-image documentation, only the shift is returned for masked cross-correlation
                shift = phase_cross_correlation(image_data2.Z,image_self.Z,upsample_factor=100,reference_mask=image_data2.mask,moving_mask=image_self.mask)
                logger.info('will apply shift (x,y): [{} : {}] {}'.format(-shift[1]*image_self.scale*image_self.degpp, shift[0]*image_self.scale*image_self.degpp,self.unit))

        elif method=="brightest":
            #align images on brightest pixel
            #find brightest pixel of reference image and image
            x_ind,y_ind = np.unravel_index(np.argmax(image_data2.Z), image_data2.Z.shape)
            x_,y_ = np.unravel_index(np.argmax(image_self.Z), image_self.Z.shape)

            shift=[y_ind-y_,x_ind-x_]
            logger.info('will apply shift (x,y): [{} : {}] {}'.format(-shift[1] * image_self.scale * image_self.degpp,
                                                                 shift[0] * image_self.scale * image_self.degpp,self.unit))
        elif method=="modelcomp" or method=="model_comp" or method=="model":
            #get models of both images
            comps1=image_self.components
            ref_comps=image_data2.components

            if comp_ids=="":
                raise Exception("Please specify valid component IDs with 'comp_ids=...'")
            else:
                if comp_ids=="all":
                    #find all possible component ids
                    comp_ids=[]
                    for comp in image_self.components:
                        comp_ids.append(comp.component_number)
                    for comp in image_data2.components:
                        comp_ids.append(comp.component_number)

                    comp_ids=np.unique(comp_ids)

                comp_ids = [comp_ids] if isinstance(comp_ids,int) else comp_ids
                x_shifts=[]
                y_shifts=[]
                x_shift_err=[]
                y_shift_err=[]
                for comp_id in comp_ids:
                    #get component from comps1:
                    found=False
                    for comp in comps1:
                        if comp.component_number==comp_id:
                            align_comp=comp
                            found=True
                    if not found:
                        align_comp=""
                    found=False
                    for ref_comp in ref_comps:
                        if ref_comp.component_number==comp_id:
                            align_comp_ref=ref_comp
                            found=True
                    if not found:
                        align_comp_ref=""

                    if align_comp!="" and align_comp_ref!="":
                        #this means a component with the given comp_id was found in both images
                        #calculate shift:
                        x1=align_comp.x*image_self.scale
                        x_ref=align_comp_ref.x*image_data2.scale
                        y1=align_comp.y*image_self.scale
                        y_ref=align_comp_ref.y*image_data2.scale

                        x_shifts.append(x1-x_ref)
                        y_shifts.append(y_ref-y1)
                        x_shift_err.append(np.sqrt((align_comp.x_err*image_self.scale)**2+(align_comp_ref.x_err*image_data2.scale)**2))
                        y_shift_err.append(np.sqrt((align_comp.y_err*image_self.scale)**2+(align_comp_ref.y_err*image_data2.scale)**2))
                    else:
                        logger.warning(f"Did no find component with id {comp_id} in both images, skipping it")

                #take mean shift if multiple components were used
                if len(y_shifts)==0:
                    logger.warning("No matching components found, will not apply a shift.")
                    return self
                else:
                    if weight_by_comp_err:
                        # Compute weights as inverse variance
                        weights_x = 1 / np.array(x_shift_err)**2
                        weights_y = 1/ np.array(y_shift_err)**2

                        # Weighted mean
                        x_shift_final = np.sum(weights_x * np.array(x_shifts)) / np.sum(weights_x)
                        y_shift_final = np.sum(weights_y * np.array(y_shifts)) / np.sum(weights_y)
                    else:
                        x_shift_final=np.mean(x_shifts)
                        y_shift_final=np.mean(y_shifts)

                    shift=[y_shift_final/image_self.scale/image_self.degpp,x_shift_final/image_self.scale/image_self.degpp]
                    logger.info('will apply shift (x,y): [{} : {}] {}'.format(-shift[1] * image_self.scale * image_self.degpp,
                                                                       shift[0] * image_self.scale * image_self.degpp,self.unit))


        else:
            warning.warn("Please use valid align method ('cross_correlation','brightest').")

        #shift shifted image
        return image_self.shift(-shift[1]*image_self.scale*image_self.degpp,shift[0]*image_self.scale*image_self.degpp,useDIFMAP=useDIFMAP)

    def restore(self,bmaj=-1,bmin=-1,posa=-1,shift_x=0,shift_y=0,npix="",pixel_size="",useDIFMAP=True,mask_outside=False):
        """
        This allows you to restore the ImageData object with a custom beam either with DIFMAP or just the image itself

        Args:
            bmaj (float): Beam major axis (in mas)
            bmin (float): Beam minor axis (in mas)
            posa (float): Beam position angle (in deg)
            shift_x (float): Shift in mas in x-direction
            shift_y (float): Shift in mas in y-direction
            npix (int): Number of pixels in one image direction
            pixel_size (float): pixel size in mas
            useDIFMAP (bool): Choose whether to use DIFMAP for the restoring or not

        Returns:
            image (ImageData): New ImageData object
        """
        if bmaj==-1:
            bmaj=self.beam_maj
        if bmin==-1:
            bmin=self.beam_min
        if posa==-1:
            posa=self.beam_pa


        #TODO basic sanity check if uvf file is present and if polarization is there
        if self.uvf_file=="" or useDIFMAP==False:
            #this means there is no valid .uvf file or we don't want to use DIFMAP

            logger.warning("No .uvf file attached or useDIFMAP=False selected, will do simple shift of image only")

            # shift in degree
            shift_x_deg = shift_x / self.scale
            shift_y_deg = shift_y / self.scale

            # calculate shift to pixel increments:
            shift_x = -int(shift_x / self.scale / self.degpp)
            shift_y = int(shift_y / self.scale / self.degpp)

            #shift the image mask
            input_ = np.fft.fft2(self.mask)  # before it was np.fft.fftn(img)
            offset_image = fourier_shift(input_, shift=[shift_y, shift_x])
            imgalign = np.fft.ifft2(offset_image)  # again before ifftn
            new_mask = np.real(imgalign) > 0.5

            # shift image directly
            input_ = np.fft.fft2(self.Z)  # before it was np.fft.fftn(img)
            offset_image = fourier_shift(input_, shift=[shift_y, shift_x])
            imgalign = np.fft.ifft2(offset_image)  # again before ifftn
            new_image_i = imgalign.real
            if not (bmaj == -1 and bmin == -1 and posa == -1):
                #convert to jansky per pixel
                new_image_i = JyPerBeam2Jy(new_image_i,self.beam_maj,self.beam_min,self.degpp*self.scale)
                new_image_i = convolve_with_elliptical_gaussian(new_image_i, bmaj / self.scale / self.degpp/(2*np.sqrt(2*np.log(2))),
                                                             bmin / self.scale / self.degpp/(2*np.sqrt(2*np.log(2))), posa)
                #convert to jansky per (new) beam
                new_image_i = Jy2JyPerBeam(new_image_i,bmaj,bmin,self.degpp*self.scale)
            # try polarization
            try:
                input_ = np.fft.fft2(self.stokes_q)  # before it was np.fft.fftn(img)
                offset_image = fourier_shift(input_, shift=[shift_y, shift_x])
                imgalign = np.fft.ifft2(offset_image)  # again before ifftn
                new_image_q = imgalign.real
                if not (bmaj==-1 and bmin ==-1 and posa==-1):
                    new_image_q = JyPerBeam2Jy(new_image_q, self.beam_maj, self.beam_min, self.degpp * self.scale)
                    new_image_q = convolve_with_elliptical_gaussian(new_image_q,
                                                                    bmaj/self.scale/self.degpp/(2*np.sqrt(2*np.log(2))),
                                                                    bmin/self.scale/self.degpp/(2*np.sqrt(2*np.log(2))),posa)
                    # convert to jansky per (new) beam
                    new_image_q = Jy2JyPerBeam(new_image_q, bmaj, bmin, self.degpp * self.scale)

                input_ = np.fft.fft2(self.stokes_u)  # before it was np.fft.fftn(img)
                offset_image = fourier_shift(input_, shift=[shift_y, shift_x])
                imgalign = np.fft.ifft2(offset_image)  # again before ifftn
                new_image_u = imgalign.real
                if not (bmaj==-1 and bmin ==-1 and posa==-1):
                    new_image_u = JyPerBeam2Jy(new_image_u, self.beam_maj, self.beam_min, self.degpp * self.scale)
                    new_image_u= convolve_with_elliptical_gaussian(new_image_u,bmaj/self.scale/self.degpp/(2*np.sqrt(2*np.log(2))),
                                                                    bmin/self.scale/self.degpp/(2*np.sqrt(2*np.log(2))),posa)
                    # convert to jansky per (new) beam
                    new_image_u = Jy2JyPerBeam(new_image_u, bmaj, bmin, self.degpp * self.scale)

            except:
                new_image_q = ""
                new_image_u = ""
                new_stokes_u_fits = ""
                new_stokes_q_fits = ""

            #write outputs to the fitsfiles
            if self.only_stokes_i:
                # this means DIFMAP style fits image
                with fits.open(self.fits_file) as f:
                    f[0].data[0, 0, :, :] = new_image_i
                    new_stokes_i_fits = self.model_save_dir+"mod_files_clean/" + self.name + "_" + self.date + "_" + "{:.0f}".format(self.freq/1e9).replace(".","_") + "GHz.fits"
                    try:
                        f[1].header['XTENSION'] = 'BINTABLE'
                        #shift model/clean components
                        f[1].data["DELTAX"] += shift_x_deg
                        f[1].data["DELTAY"] += shift_y_deg
                    except:
                        pass
                    if not (bmaj == -1 and bmin == -1 and posa == -1):
                        #Overwrite beam parameters in header
                        f[0].header["BMAJ"] = bmaj / self.scale
                        f[0].header["BMIN"] = bmin / self.scale
                        f[0].header["BPA"] = posa
                    f.writeto(new_stokes_i_fits, overwrite=True)

                if len(self.stokes_q) > 0:
                    with fits.open(self.stokes_q_path) as f:
                        f[0].data[0, 0, :, :] = new_image_q
                        new_stokes_q_fits = self.model_save_dir+"mod_files_q/" + self.name + "_" + self.date + "_" + "{:.0f}".format(self.freq/1e9).replace(".","_") + "GHz.fits"
                        try:
                            f[1].header['XTENSION'] = 'BINTABLE'
                            # shift model/clean components
                            f[1].data["DELTAX"] += shift_x_deg
                            f[1].data["DELTAY"] += shift_y_deg
                        except:
                            pass
                        if not (bmaj == -1 and bmin == -1 and posa == -1):
                            # Overwrite beam parameters in header
                            f[0].header["BMAJ"] = bmaj / self.scale
                            f[0].header["BMIN"] = bmin / self.scale
                            f[0].header["BPA"] = posa
                        f.writeto(new_stokes_q_fits, overwrite=True)

                if len(self.stokes_u) > 0:
                    with fits.open(self.stokes_u_path) as f:
                        f[0].data[0, 0, :, :] = new_image_u
                        new_stokes_u_fits = self.model_save_dir+"mod_files_u/" + self.name + "_" + self.date + "_" + "{:.0f}".format(self.freq/1e9).replace(".","_") + "GHz.fits"
                        try:
                            f[1].header['XTENSION'] = 'BINTABLE'
                            # shift model/clean components
                            f[1].data["DELTAX"] += shift_x_deg
                            f[1].data["DELTAY"] += shift_y_deg
                        except:
                            pass
                        if not (bmaj == -1 and bmin == -1 and posa == -1):
                            # Overwrite beam parameters in header
                            f[0].header["BMAJ"] = bmaj / self.scale
                            f[0].header["BMIN"] = bmin / self.scale
                            f[0].header["BPA"] = posa
                        f.writeto(new_stokes_u_fits, overwrite=True)


            else:
                # CASA style
                f = fits.open(self.fits_file)
                f[0].data[0, 0, :, :] = new_image_i
                f[0].data[1, 0, :, :] = new_image_q
                f[0].data[2, 0, :, :] = new_image_u
                if not (bmaj == -1 and bmin == -1 and posa == -1):
                    # Overwrite beam parameters in header
                    f[0].header["BMAJ"] = bmaj / self.scale
                    f[0].header["BMIN"] = bmin / self.scale
                    f[0].header["BPA"] = posa
                new_stokes_i_fits = self.model_save_dir+"mod_files_clean/" + self.name + "_" + self.date + "_" + "{:.0f}".format(self.freq/1e9).replace(".","_") + "GHz.fits"
                f.writeto(new_stokes_i_fits, overwrite=True, output_verify='ignore')
                f.close()

                new_stokes_q_fits=""
                new_stokes_u_fits=""

            # if model loaded try shifting model image as well
            try:
                if not self.model_file_path == self.fits_file:
                    input_ = np.fft.fft2(
                        fits.open(self.model_file_path)[0].data[0, 0, :, :])  # before it was np.fft.fftn(img)
                    offset_image = fourier_shift(input_, shift=[shift_y, shift_x])
                    imgalign = np.fft.ifft2(offset_image)  # again before ifftn
                    new_image_model = imgalign.real
                    if not (bmaj == -1 and bmin == -1 and posa == -1):
                        new_image_model = JyPerBeam2Jy(new_image_model, self.beam_maj, self.beam_min,
                                                       self.degpp * self.scale)
                        new_image_model = convolve_with_elliptical_gaussian(new_image_model,
                                                                            bmaj / self.scale / self.degpp / (2*np.sqrt(2*np.log(2))),
                                                                            bmin / self.scale / self.degpp / (2*np.sqrt(2*np.log(2))),
                                                                            posa)
                        # convert to jansky per (new) beam
                        new_image_model = Jy2JyPerBeam(new_image_model, bmaj, bmin, self.degpp * self.scale)

                    with fits.open(self.model_file_path) as f:
                        f[0].data[0, 0, :, :] = new_image_model
                        new_model_fits = self.model_save_dir + "mod_files_model/" + self.name + "_" + self.date + "_" + "{:.0f}".format(
                    self.freq / 1e9).replace(".", "_") + "GHz.fits"
                        try:
                            f[1].header['XTENSION'] = 'BINTABLE'
                            f[1].data["DELTAX"] += shift_x_deg
                            f[1].data["DELTAY"] += shift_y_deg
                        except:
                            pass
                        if not (bmaj == -1 and bmin == -1 and posa == -1):
                            f[0].header["BMAJ"] = bmaj / self.scale
                            f[0].header["BMIN"] = bmin / self.scale
                            f[0].header["BPA"] = posa
                        f.writeto(new_model_fits, overwrite=True)
                else:
                    new_model_fits = new_stokes_i_fits
            except:
                new_image_model = ""
                new_model_fits = ""

            new_uvf_file=self.uvf_file

        else:
            #This means we have a valid .uvf file and we will use DIFMAP for shifting and restoring
            # calculate shift to pixel increments:
            shift_x_pix = -int(shift_x / self.scale / self.degpp)
            shift_y_pix = int(shift_y / self.scale / self.degpp)

            #first let's shift the mask
            # shift the image mask
            input_ = np.fft.fft2(self.mask)  # before it was np.fft.fftn(img)
            offset_image = fourier_shift(input_, shift=[shift_y_pix, shift_x_pix])
            imgalign = np.fft.ifft2(offset_image)  # again before ifftn
            new_mask = np.real(imgalign) > 0.5

            #restore Stokes I
            new_stokes_i_fits=self.stokes_i_mod_file.replace(".mod","")

            fold_with_beam([self.fits_file],difmap_path=self.difmap_path,
                    bmaj=bmaj, bmin=bmin, posa=posa,shift_x=shift_x,shift_y=shift_y,
                    channel="i",output_dir=self.model_save_dir+"mod_files_clean",outname=new_stokes_i_fits,
                    n_pixel=len(self.X)*2,pixel_size=self.degpp*self.scale,
                    mod_files=[self.stokes_i_mod_file],clean_mod_files=[self.stokes_i_mod_file],
                    uvf_files=[self.uvf_file],weighting=self.uvw,uvtaper=self.uvtaper)

            new_stokes_i_fits+=".fits"

            #try to restore modelfit if it is there
            try:
                if not self.model_file_path==self.fits_file:
                    new_model_fits=self.model_mod_file.replace(".mod","")

                    fold_with_beam([self.fits_file], difmap_path=self.difmap_path,
                        bmaj=bmaj, bmin=bmin, posa=posa, shift_x=shift_x, shift_y=shift_y,
                        channel="i", output_dir=self.model_save_dir + "mod_files_model", outname=new_model_fits,
                        n_pixel=len(self.X)*2,pixel_size=self.degpp*self.scale,
                        mod_files=[self.model_mod_file], clean_mod_files=[self.stokes_i_mod_file], uvf_files=[self.uvf_file],
                        weighting=self.uvw,uvtaper=self.uvtaper)

                    new_model_fits+=".fits"
                else:
                    new_model_fits=new_stokes_i_fits
            except:
                new_model_fits=""

            #try to restore polarization as well if it is there
            try:
                new_stokes_q_fits=self.stokes_q_mod_file.replace(".mod","")
                new_stokes_u_fits=self.stokes_u_mod_file.replace(".mod","")


                fold_with_beam([self.fits_file],difmap_path=self.difmap_path,
                    bmaj=bmaj, bmin=bmin, posa=posa,shift_x=shift_x,shift_y=shift_y,
                    channel="q",output_dir=self.model_save_dir+"mod_files_q",outname=new_stokes_q_fits,
                    n_pixel=len(self.X)*2,pixel_size=self.degpp*self.scale,
                    mod_files=[self.stokes_q_mod_file],clean_mod_files=[self.stokes_i_mod_file],
                               uvf_files=[self.uvf_file],weighting=self.uvw,uvtaper=self.uvtaper)

                new_stokes_q_fits+=".fits"

                fold_with_beam([self.fits_file],difmap_path=self.difmap_path,
                    bmaj=bmaj, bmin=bmin, posa=posa, shift_x=shift_x,shift_y=shift_y,
                    channel="u",output_dir=self.model_save_dir+"mod_files_u",outname=new_stokes_u_fits,
                    n_pixel=len(self.X)*2,pixel_size=self.degpp*self.scale,
                    mod_files=[self.stokes_u_mod_file],clean_mod_files=[self.stokes_i_mod_file],
                               uvf_files=[self.uvf_file],weighting=self.uvw,uvtaper=self.uvtaper)

                new_stokes_u_fits+=".fits"

            except:
                new_stokes_q_fits=""
                new_stokes_u_fits=""

            new_uvf_file=new_stokes_i_fits.replace(".fits",".uvf")

        if not self.model_inp:
            new_model_fits = ""

        return ImageData(fits_file=new_stokes_i_fits,
                         uvf_file=new_uvf_file,
                         stokes_q=new_stokes_q_fits,
                         stokes_u=new_stokes_u_fits,
                         mask=new_mask,
                         ridgeline=self.ridgeline,
                         redshift=self.redshift,
                         counter_ridgeline=self.counter_ridgeline,
                         noise_method=self.noise_method,
                         model_save_dir=self.model_save_dir,
                         model=new_model_fits,
                         correct_rician_bias=self.correct_rician_bias,
                         comp_ids=self.get_model_info()[0],
                         core_comp_id=self.get_model_info()[1],
                         difmap_path=self.difmap_path,
                         fit_comp_polarization=self.fit_comp_pol,
                         fit_comp_pol_errors=self.fit_comp_pol_errors,
                         uvw=self.uvw,
                         uvtaper=self.uvtaper)

    def shift(self,shift_x,shift_y,useDIFMAP=True):
        """
        Function to shift the image in RA and Dec.

        Args:
            shift_x (float): Shift in Right Ascension (in mas)
            shift_y (float): Shift in Declination (in mas)
            npix (int): Option to change the number of pixels in ONE direction.
            pixel_size (float): Option to change the pixel size (in mas)
            useDIFMAP (bool): Choose whether to use DIFMAP for shifting or not.

        Returns:
            image (ImageData): shifted ImageData object
        """
        try:
            #We can just call the restore() function without doing the restore steps
            return self.restore(-1,-1,-1,shift_x,shift_y,useDIFMAP=useDIFMAP)
        except:
            raise Exception("No shift possible, something went wrong!")

    def masking(self, mask_type='ellipse', args=False, invert_mask=False):
        '''
        Function to mask ImageData object.

        Args:
            mask_type: 'npix_x','cut_left','cut_right','radius','ellipse','flux_cut'
            args: the arguments for the mask
                'npix_x': args=[npix_x,npixy]
                'cut_left': args = cut_left
                'cut_right': args = cut_right
                'radius': args = radius
                'ellipse': args = {'e_args': [e_maj,e_min,e_pa], 'e_xoffset': xoff, 'e_yoffset': yoff} all in the image intrinsic unit
                'flux_cut: args = flux cut
                    Flags everything above flux_cut times peak brightness

        '''
        # cut out inner, optically thick part of the image
        if mask_type == 'npix_x':
            npix_x = args[0]
            npix_y = args[1]
            px_min_x = int(len(self.X) / 2 - npix_x/2)
            px_max_x = int(len(self.X) / 2 + npix_x/2)
            px_min_y = int(len(self.Y) / 2 - npix_y/2)
            px_max_y = int(len(self.Y) / 2 + npix_y/2)

            px_range_x = np.arange(px_min_x, px_max_x + 1, 1)
            px_range_y = np.arange(px_min_y, px_max_y + 1, 1)

            index = np.meshgrid(px_range_y, px_range_x)
            self.mask[tuple(index)] = True

        if mask_type == 'cut_left':
            cut_left = args
            px_max = int(len(self.X) / 2. + cut_left)
            px_range_x = np.arange(0, px_max, 1)
            self.mask[:, px_range_x] = True

        if mask_type == 'cut_right':
            cut_right = args
            px_max = int(len(self.X) / 2 - cut_right)
            px_range_x = np.arange(px_max, len(self.X), 1)
            self.mask[:, px_range_x] = True

        if mask_type == 'radius':
            radius = args
            rr, cc = disk((int(len(self.X) / 2), int(len(self.Y) / 2)), radius)
            self.mask[rr, cc] = True

        if mask_type == 'ellipse':
            e_maj = int(args['e_args'][0]/self.scale/self.degpp)/2
            e_min = int(args['e_args'][1]/self.scale/self.degpp)/2
            e_pa = args['e_args'][2]
            e_xoffset = -int(args['e_xoffset']/self.scale/self.degpp)
            e_yoffset = int(args['e_yoffset']/self.scale/self.degpp)

            try:
                x, y = int(len(self.X) / 2) + e_xoffset, int(len(self.Y) / 2) + e_yoffset
            except:
                try:
                    x, y = int(len(self.X) / 2) + e_xoffset, int(len(self.Y) / 2)
                except:
                    try:
                        x, y = int(len(self.X) / 2) , int(len(self.Y) / 2) + e_yoffset
                    except:
                        x, y = int(len(self.X) / 2) , int(len(self.Y) / 2)

            if e_pa == False:
                e_pa = 0
            else:
                e_pa = e_pa
            rr, cc = ellipse(y, x, e_maj, e_min, rotation=-e_pa * np.pi / 180)
            self.mask[rr, cc] = True

        if mask_type == 'flux_cut':
            flux_cut = args
            # mask everything above flux_cut times the peak brightness
            self.mask[self.Z>flux_cut*np.max(self.Z)] = True

        if mask_type == 'reset':
            self.mask=np.zeros_like(self.Z)

        if invert_mask==True:
            self.mask=np.invert(self.mask)

    def rotate(self,angle,useDIFMAP=True,reshape=False,order=1):
        """
        Function to rotate ImageData Object (note: EVPAs are currently not rotated!)

        Args:
            angle (float): Rotation angle in degrees (North through East)
            useDIFMAP (bool): Choose whether to use DIFMAP or not
            reshape (bool): If useDIFMAP=False, choose whether to reshape the image size to avoid empty areas.
            order (int): Order parameter for scipy.ndimage.rotate function

        Returns:
            image (ImageData): rotated ImageData object
        """

        #rotate mask
        new_mask=scipy.ndimage.rotate(self.mask,-angle,reshape=reshape,order=0)
        #make sure values are valid
        new_mask[new_mask < 0.1] = False
        new_mask[new_mask >= 0.1] = True

        #rotate uvf file
        if self.uvf_file!="":
            new_uvf = self.model_save_dir + "mod_files_clean/" + self.name + "_" + self.date + "_" + "{:.0f}".format(
                self.freq / 1e9).replace(".", "_") + "GHz.uvf"

            rotate_uvf_file(self.uvf_file, -angle, new_uvf)

        #rotate ridgeline
        x_new,y_new=rotate_points(np.array(self.ridgeline.X_ridg), np.array(self.ridgeline.Y_ridg), -angle)
        self.ridgeline.X_ridg=x_new
        self.ridgeline.Y_ridg=y_new

        #rotate counterridgeline
        x_new, y_new = rotate_points(np.array(self.counter_ridgeline.X_ridg), np.array(self.counter_ridgeline.Y_ridg), -angle)
        self.counter_ridgeline.X_ridg = x_new
        self.counter_ridgeline.Y_ridg = y_new

        #do actual image rotations
        if self.uvf_file=="" or not useDIFMAP:
            logger.warning("No .uvf file attached or useDIFMAP=False selected, will do simple shift of image only")

            new_image_i=scipy.ndimage.rotate(self.Z,-angle,reshape=reshape,order=order)

            try:
                new_image_q = scipy.ndimage.rotate(self.stokes_q,-angle,reshape=reshape,order=order)
                new_image_u = scipy.ndimage.rotate(self.stokes_u,-angle,reshape=reshape,order=order)
            except:
                logger.warning("Unable to rotate polarization, probably no polarization loaded")

            # write outputs to the fits files
            if self.only_stokes_i:
                # this means DIFMAP style fits image
                with fits.open(self.fits_file) as f:
                    # overwrite image data
                    f[0].data[0, 0, :, :] = new_image_i
                    new_stokes_i_fits = self.model_save_dir + "mod_files_clean/" + self.name + "_" + self.date + "_" + "{:.0f}".format(
                        self.freq / 1e9).replace(".", "_") + "GHz.fits"
                    try:
                        f[1].header['XTENSION'] = 'BINTABLE'
                        new_x,new_y=rotate_points(f[1].data["DELTAX"],f[1].data["DELTAY"],-angle)
                        f[1].data['DELTAX']=new_x
                        f[1].data['DELTAY']=new_y
                    except:
                        pass
                    f[0].header['BPA']+=angle
                    f.writeto(new_stokes_i_fits, overwrite=True)

                if len(self.stokes_q) > 0:
                    with fits.open(self.stokes_q_path) as f:
                        # overwrite image data
                        f[0].data[0, 0, :, :] = new_image_q
                        new_stokes_q_fits = self.model_save_dir + "mod_files_q/" + self.name + "_" + self.date + "_" + "{:.0f}".format(
                            self.freq / 1e9).replace(".", "_") + "GHz.fits"
                        try:
                            f[1].header['XTENSION'] = 'BINTABLE'
                            new_x, new_y = rotate_points(f[1].data["DELTAX"], f[1].data["DELTAY"], -angle)
                            f[1].data['DELTAX'] = new_x
                            f[1].data['DELTAY'] = new_y
                        except:
                            pass
                        f[0].header['BPA'] += angle
                        f.writeto(new_stokes_q_fits, overwrite=True)
                else:
                    new_stokes_q_fits = ""

                if len(self.stokes_u) > 0:
                    with fits.open(self.stokes_u_path) as f:
                        # overwrite image data
                        f[0].data[0, 0, :, :] = new_image_u
                        new_stokes_u_fits = self.model_save_dir + "mod_files_u/" + self.name + "_" + self.date + "_" + "{:.0f}".format(
                            self.freq / 1e9).replace(".", "_") + "GHz.fits"
                        try:
                            f[1].header['XTENSION'] = 'BINTABLE'
                            new_x, new_y = rotate_points(f[1].data["DELTAX"], f[1].data["DELTAY"], -angle)
                            f[1].data['DELTAX'] = new_x
                            f[1].data['DELTAY'] = new_y
                        except:
                            pass
                        f[0].header['BPA'] += angle
                        f.writeto(new_stokes_u_fits, overwrite=True)
                else:
                    new_stokes_u_fits = ""

            else:
                # CASA style
                f = fits.open(self.fits_file)
                # overwrite image data
                f[0].data[0, 0, :, :] = new_image_i
                f[0].data[1, 0, :, :] = new_image_q
                f[0].data[2, 0, :, :] = new_image_u
                new_stokes_i_fits = self.model_save_dir + "mod_files_clean/" + self.name + "_" + self.date + "_" + "{:.0f}".format(
                    self.freq / 1e9).replace(".", "_") + "GHz.fits"
                f[0].header['BPA'] += angle
                f.writeto(new_stokes_i_fits, overwrite=True, output_verify='ignore')
                new_stokes_q_fits = ""
                new_stokes_u_fits = ""

            # if model loaded try rotating as well
            try:
                if not self.model_file_path == self.fits_file:
                    if not self.model_file_path == "":

                        new_image_model=scipy.ndimage.rotate(fits.open(self.model_file_path)[0].data,-angle,reshape=reshape,order=order)

                        with fits.open(self.model_file_path) as f:
                            f[0].data[0, 0, :, :] = new_image_model
                            new_model_fits = self.model_save_dir + "mod_files_model/" + self.name + "_" + self.date + "_" + "{:.0f}".format(
                    self.freq / 1e9).replace(".", "_") + "GHz.fits"
                            try:
                                f[1].header['XTENSION'] = 'BINTABLE'
                                new_x, new_y = rotate_points(f[1].data["DELTAX"], f[1].data["DELTAY"], -angle)
                                f[1].data['DELTAX'] = new_x
                                f[1].data['DELTAY'] = new_y
                            except:
                                pass
                            f[0].header['BPA'] += angle
                            f.writeto(new_model_fits, overwrite=True)
                    else:
                        new_model_fits = ""
                else:
                    new_model_fits = new_stokes_i_fits
            except:
                logger.warning("Model not regridded, probably no model loaded.")
                new_model_fits = ""

            if not self.model_inp:
                new_model_fits=""

            self.beam_pa+=angle

            newImageData= ImageData(fits_file=new_stokes_i_fits,
                         uvf_file=self.uvf_file,
                         stokes_q=new_stokes_q_fits,
                         stokes_u=new_stokes_u_fits,
                         mask=new_mask,
                         redshift=self.redshift,
                         ridgeline=self.ridgeline,
                         counter_ridgeline=self.counter_ridgeline,
                         noise_method=self.noise_method,
                         model_save_dir=self.model_save_dir,
                         model=new_model_fits,
                         correct_rician_bias=self.correct_rician_bias,
                         comp_ids=self.get_model_info()[0],
                         core_comp_id=self.get_model_info()[1],
                         difmap_path=self.difmap_path,
                         fit_comp_polarization=self.fit_comp_pol,
                         fit_comp_pol_errors=self.fit_comp_pol_errors,
                         uvw=self.uvw,
                         uvtaper=self.uvtaper)

        else:

            if not self.model_inp:
                self.model_file_path=""

            newImageData=ImageData(fits_file=self.fits_file,
                         uvf_file=self.uvf_file,
                         stokes_q=self.stokes_q_path,
                         stokes_u=self.stokes_u_path,
                         mask=self.mask,
                         redshift=self.redshift,
                         ridgeline=self.ridgeline,
                         counter_ridgeline=self.counter_ridgeline,
                         noise_method=self.noise_method,
                         model_save_dir=self.model_save_dir,
                         model=self.model_file_path,
                         correct_rician_bias=self.correct_rician_bias,
                         comp_ids=self.get_model_info()[0],
                         core_comp_id=self.get_model_info()[1],
                         difmap_path=self.difmap_path,
                         fit_comp_polarization=self.fit_comp_pol,
                         fit_comp_pol_errors=self.fit_comp_pol_errors,
                         uvw=self.uvw,
                         uvtaper=self.uvtaper)

            rotate_mod_file(self.stokes_i_mod_file,angle,self.stokes_i_mod_file)
            try:
                rotate_mod_file(self.stokes_q_mod_file,angle,self.stokes_q_mod_file)
                rotate_mod_file(self.stokes_u_mod_file,angle,self.stokes_u_mod_file)
            except:
                logger.debug("Could not rotate polarization, probably not loaded.")
            try:
                rotate_mod_file(self.model_mod_file,angle,self.model_mod_file)
            except:
                logger.debug("Could not rotate model, probably not loaded.")

            newImageData.uvf_file=new_uvf
            newImageData.mask=new_mask
            newImageData.beam_pa+=angle

            newImageData=newImageData.restore()

        return newImageData

    def get_peak_distance(self):
        """
        Function to calculate the Distance between Stokes I and Linear Polarization Peak

        Returns:
            [x_dist,y_dist]: Vector difference between Stokes I and Lin-Pol peak (in mas)
        """
        #returns distance between stokes I and lin pol peak

        #find maximum indices for stokes I and lin_pol
        y_i, x_i = np.unravel_index(np.argmax(self.Z), self.Z.shape)
        y_pol, x_pol = np.unravel_index(np.argmax(self.lin_pol),self.lin_pol.shape)

        x_dist=self.X[x_pol]-self.X[x_i]
        y_dist=self.Y[y_pol]-self.Y[y_i]

        return [x_dist, y_dist]

    def center(self,mode="stokes_i",useDIFMAP=True):
        """
        Function to center the brightest pixel of the image.

        Args:
            mode: Choose which map to use ('stokes_i', 'lin_pol','core')
            useDIFMAP: Choose whether to use DIFMAP or not.

        Returns:
            Shifted ImageData object
        """

        if mode=="stokes_i" or mode=="lin_pol" or mode=="linpol":
            if mode=="stokes_i":
                ref_image=self.Z
            elif mode=="lin_pol" or mode=="linpol":
                ref_image=self.lin_pol

            # find brightest pixel of reference image and center of current image
            x_ind, y_ind = int(len(self.X)/2),int(len(self.Y)/2)
            x_, y_ = np.unravel_index(np.argmax(ref_image), ref_image.shape)

            shift = [y_ind - y_, x_ind - x_]
            logger.info('will apply shift (x,y): [{} : {}] {}'.format(-shift[1] * self.scale * self.degpp,
                                                                 shift[0] * self.scale * self.degpp,self.unit))

            return self.shift(-shift[1] * self.scale * self.degpp,
                              shift[0] * self.scale * self.degpp, useDIFMAP=useDIFMAP)
        elif mode == "core":
            core = self.get_core_component()
            return self.shift(-core.x*core.scale,-core.y*core.scale,useDIFMAP=useDIFMAP)
        else:
            raise Exception("Please pick valid 'mode' parameter ('stokes_i','lin_pol','core').")

    def get_profile(self,point1,point2,show=True,image="stokes_i"):
        """
        Function to obtain a line profile of the image.

        Args:
            point1 (list[float]): Starting Point of the profile [x1,y1] (in mas)
            point2 (list[float]): End Point of the profile [x2,y2] (in mas)
            show (bool): Choose whether to display a plot of the profile
            image (bool): Choose map to use ('stokes_i','lin_pol','evpa','spix','rm')

        Returns:
            x_values, intensity_profile: Array of the Distance from point1 to point2 and the profile
        """

        #get index of slice ends
        x_ind1 = closest_index(self.X,point1[0])
        y_ind1 = closest_index(self.Y,point1[1])
        x_ind2 = closest_index(self.X, point2[0])
        y_ind2 = closest_index(self.Y, point2[1])

        #select image to get slice from
        if image=="stokes_i":
            image_data=self.Z
        elif image=="lin_pol":
            image_data=self.lin_pol
        elif image=="evpa":
            image_data=self.evpa
        elif image=="spix":
            image_data=self.spix
        elif image=="rm":
            image_data=self.rm
        elif image=="frac_pol":
            image_data=self.lin_pol/self.Z
        elif image=="stokes_q":
            image_data=self.stokes_q
        elif image=="stokes_u":
            image_data=self.stokes_u
        else:
            raise Exception(f"Please specify valid 'image' parameter, image='{image}' not supported.")

        intensity_profile=profile_line(image_data, (y_ind1,x_ind1), (y_ind2,x_ind2))

        #calculate distance between points
        dist=np.sqrt((point2[0] - point1[0]) ** 2 + (point2[1] - point1[1]) ** 2)
        #get x_values of intensity_profile
        x_values=np.linspace(0,dist,len(intensity_profile))

        if show:
            plt.plot(x_values,intensity_profile)
            plt.xlabel(f"Distance from Point 1 [{self.unit}]")
            plt.ylabel("Flux Density [Jy/beam]")
            plt.tight_layout()
            plt.show()

        return x_values, intensity_profile

    def get_ridgeline(self,method="slices",angle_for_slices=0,auto_rotate=True,jet_angle="",
                      cut_radial=5.0, cut_final=10.0,counterjet=False,width=40,j_len="",start_radius=0,end_radius=0,chi_sq_val=100.0,err_FWHM=0.1):

        """
        Function to calculate the Ridgeline (and Counter-Ridgeline) of an image.

        Args:
            method (str): Select method to use ('slices', 'polar')
            angle_for_slices (float): Choose angle for the slices method
            auto_rotate (bool): For the 'slices' method, choose whether to automatically detect the jet direction
            jet_angle (float): If auto_rotate=False, provide the jet_angle in degrees for the 'slices' method
            cut_radial (float): radial SNR Cut for the 'slices' method
            cut_final (float): final SNR cut for the 'slices' method
            counterjet (bool): Choose whether to also fit a counterjet
            width (int): Jet width in to consider for 'slices' method (in pixel)
            j_len (int): Jet length to consider for 'slices' method (in pixel)
            start_radius (float): Start radius for polar method (in mas)
            chi_sq_val (float): Chi-squared cut for fits.
            err_FWHM (float): Relative error of the FWHM to consider for fits

        Returns:
            ridgelines (list): Ridgeline and Counter-Ridgeline objects
        """

        if method=="slices":
            #this is Lucas method with an additional option to auto_rotate.
            image=self.copy()

            if auto_rotate:
                #convert image to polar coordinates
                R, Theta, Z_polar = convert_image_to_polar(self.X, self.Y, self.Z)
                #Integrate over the radius to find jet direction:
                integrated_jet=np.zeros(len(Theta[:,0]))
                for i in range(len(R[0])):
                    integrated_jet+=Z_polar[:,i]*R[:,i] #correct for rdTheta in integration
                #plt.plot(Theta[:,0],integrated_jet)
                #plt.show()
                #find maximum flux
                max_ind=np.argmax(integrated_jet)
                jet_direction=Theta[:,0][max_ind]
                logger.info(f"Automatically determined jet direction {jet_direction}°.")
                image=image.rotate(-jet_direction)
            elif jet_angle!="":
                image=image.rotate(-jet_angle)
            else:
                logger.warning("Will assume the jet was already rotated to position angle 0°.")

            # TODO need to CONVERT IT TO Jy/px????
            image_data = image.Z

            #if not j_len given, will use full image - 10 pixels at the edge
            if j_len=="":
                j_len=int(len(self.Y)/2-10)

            #get ridgeline
            ridgeline=Ridgeline().get_ridgeline_luca(image_data,self.noise,self.error,self.degpp*self.scale,[self.beam_maj,self.beam_min,self.beam_pa],
                                                     self.X,self.Y,angle_for_slices=angle_for_slices,cut_radial=cut_radial,
                                                     cut_final=cut_final,width=width,j_len=j_len,chi_sq_val=chi_sq_val,err_FWHM=err_FWHM)
            image.ridgeline=ridgeline

            if counterjet:
                counter_ridgeline=Ridgeline().get_ridgeline_luca(image_data,self.noise,self.error,self.degpp*self.scale,[self.beam_maj,self.beam_min,self.beam_pa],
                                                     self.X,self.Y,counterjet=True,angle_for_slices=angle_for_slices,cut_radial=cut_radial,
                                                     cut_final=cut_final,width=width,j_len=j_len,chi_sq_val=chi_sq_val,err_FWHM=err_FWHM)

                image.counter_ridgeline=counter_ridgeline

            if auto_rotate:
                # rotate image back
                image.rotate(jet_direction)
            elif jet_angle!="":
                image = image.rotate(jet_angle)
            # set new ridgeline
            self.ridgeline = image.ridgeline
            self.counter_ridgeline = image.counter_ridgeline

            return self.ridgeline, self.counter_ridgeline

        elif method=="polar":
            #convert image to polar coordinates
            image = self.copy()

            if auto_rotate:
                # convert image to polar coordinates
                R, Theta, Z_polar = convert_image_to_polar(self.X, self.Y, self.Z)
                # Integrate over the radius to find jet direction:
                integrated_jet = np.zeros(len(Theta[:, 0]))
                for i in range(len(R[0])):
                    integrated_jet += Z_polar[:, i] * R[:, i]  # correct for rdTheta in integration
                # plt.plot(Theta[:,0],integrated_jet)
                # plt.show()
                # find maximum flux
                max_ind = np.argmax(integrated_jet)
                jet_direction = Theta[:, 0][max_ind]
                logger.info(f"Automatically determined jet direction {jet_direction}°.")
                image = image.rotate(-jet_direction)
            elif jet_angle != "":
                image = image.rotate(-jet_angle)
            else:
                logger.warning("Will assume the jet was already rotated to position angle 0°.")

            R, Theta, Z_polar = convert_image_to_polar(image.X, image.Y, image.Z)

            ridgeline=Ridgeline().get_ridgeline_polar(R,Theta,Z_polar,self,[self.beam_maj,self.beam_min,self.beam_pa],self.error,
                                                      start_radius=start_radius,end_radius=end_radius)

            image.ridgeline=ridgeline

            if auto_rotate:
                # rotate image back
                image.rotate(jet_direction)
            elif jet_angle != "":
                image = image.rotate(jet_angle)
            # set new ridgeline
            self.ridgeline = image.ridgeline

            return self.ridgeline, self.counter_ridgeline

        elif method=="polar_gauss":
            #convert image to polar coordinates
            R, Theta, Z_polar = convert_image_to_polar(self.X, self.Y, self.Z)

            ridgeline=Ridgeline().get_ridgeline_polar(R,Theta,Z_polar,[self.beam_maj,self.beam_min,self.beam_pa],self.error,
                                                      start_radius=start_radius)

            self.ridgeline=ridgeline

            return self.ridgeline, self.counter_ridgeline
        else:
            raise Exception("Please select valid ridgeline method ('polar', 'slices').")

    def get_noise_from_shift(self,shift_factor=20):
        """
        Function to calculate the image noise by shifting the phase center with DIFMAP

        Args:
            shift_factor (float): Factor of how far times the image size to shift the phase center away.

        Returns:
            noise (float): Noise value in Jy
        """

        if self.uvf_file == "":
            logger.warning("Shift not possible, no .uvf file attached to ImageData!")
            return self.noise

        size_x=len(self.X)*self.degpp*self.scale
        size_y=len(self.Y)*self.degpp*self.scale

        #shift data away to get rms
        shifted_image=self.shift(size_x*shift_factor,size_y*shift_factor)

        noise=np.std(shifted_image.Z)

        return noise

    def jet_to_counterjet_profile(self,savefig="",show=True):
        """
        Function to plot the jet-to-counterjet ratio

        Args:
            savefig (str): File path to store the plot
            show (bool): Choose whether to display the plot
        """
        self.ridgeline.jet_to_counterjet_profile(self.counter_ridgeline,savefig=savefig,show=show)

    def get_model_info(self):
        """
        Helper method to get the current state of the model

        Returns:
            comps (list): List of Component IDs and the Core Component ID
        """
        comp_ids=[]
        core_comp_id=0
        if self.components!=[]:
            for comp in self.components:
                comp_ids.append(comp.component_number)
                if comp.is_core:
                    core_comp_id=comp.component_number

        return comp_ids, core_comp_id

    def change_component_ids(self,old_ids,new_ids):
        """
        Function to assign new component numbers

        Args:
            old_ids (int or list[int]): Old component IDs
            new_ids (int or list[int]): New component IDs
        """

        #handle single value input
        if isinstance(old_ids,int) and isinstance(new_ids,int):
            old_ids=[old_ids]
            new_ids=[new_ids]

        old_ids=np.array(old_ids)
        new_ids=np.array(new_ids)

        if len(np.unique(old_ids)) != len(old_ids) or len(np.unique(new_ids)) != len(new_ids):
            raise Exception("Component number specified more than one time in old_ids or new_ids!")

        #set new component ids
        for ind,comp in enumerate(self.components):
            if comp.component_number in old_ids:
                i=int(np.where(np.array(old_ids)==comp.component_number)[0][0])
                self.components[ind].component_number=new_ids[i]
            else:
                if comp.component_number in new_ids:
                    #in that case we will reset the component id to avoid duplication
                    self.components[ind].component_number=-1

    def set_core_component(self,id):
        """
        Function to set the core component

        Args:
            id (int): Component ID of the core component
        """

        core_ind=""
        for ind, comp in enumerate(self.components):
            if comp.component_number==id:
                self.components[ind].is_core=True
                core_ind=ind
            else:
                self.components[ind].is_core=False

        if core_ind=="":
            logger.warning(f"No component with ID {id} found, no core currently set!")
        else:
            #recalculate core distances for every component
            for i, comp in enumerate(self.components):
                core=self.components[core_ind]
                self.components[i].set_distance_to_core(core.x, core.y,core.x_err,core.y_err)

    def get_component(self,id):
        """
        Function to get a specific Component.

        Args:
            id (int): ID of the component

        Returns:
            Component
        """
        for comp in self.components:
            if comp.component_number==id:
                return comp

        raise Exception(f"Component with ID {id} not found.")

    def get_core_component(self):
        """
        Function to retrieve the core component.

        Returns:
            comp (Component): Core Component
        """
        for comp in self.components:
            if comp.is_core:
                return comp

        raise Exception(f"No core component defined.")

    def remove_component(self,id):
        """
        Function to remove a selected component from the Stokes I image

        Args:
            id (int): Component id to remove
        """

        if isinstance(id,int):
            id=[id]
        elif not isinstance(id,list):
            raise Exception("Please enter valid component id (int or list[int])!")

        comps_to_remove=[]
        for i in id:
            comps_to_remove.append(self.get_component(i))

        #TODO rewrite to work without ehtim
        import ehtim as eh
        mod=eh.model.Model()

        for comp in comps_to_remove:
            mod=mod.add_gauss(F0=comp.flux,
                              FWHM_maj=comp.maj*comp.scale*eh.RADPERUAS*1e3,
                              FWHM_min=comp.min*comp.scale*eh.RADPERUAS*1e3,
                              PA=comp.pos/180*np.pi,
                              x0=comp.x/180*np.pi,
                              y0=comp.y/180*np.pi)

        im=mod.make_image((np.max(self.X)-np.min(self.X))*1e3*eh.RADPERUAS, len(self.X))
        im=im.blur_gauss([self.beam_maj/self.scale/180*np.pi,self.beam_min/self.scale/180*np.pi,self.beam_pa/180*np.pi])

        image=im.imvec.reshape((im.ydim, im.xdim))
        image=Jy2JyPerBeam(image,self.beam_maj,self.beam_min,self.degpp*self.scale)
        image=np.flip(image,axis=0)

        #subtract core from stokes I image
        self.Z=np.array(self.Z)-image

        return self

    def calculate_opening_angle(self,ids="", snr_cut=1):
        """
        Calculates the opening angle for circular Gauss components between the core component and a given component
        Args:
            ids (int, list[int]): Component ID of component to calculate the opening angle for

        Returns:
            angle (list[float]): Opening angles in degrees
        """

        if isinstance(ids,list):
            ids=ids
        elif isinstance(ids,int):
            ids=[ids]
        else:
            if not isinstance(ids,str) or ids!="":
                raise Exception("Invalid IDs provided.")
            else:
                ids,core_id=self.get_model_info()
                ids.remove(core_id)

        core=self.get_core_component()
        angles = []

        for id in ids:
            if id in self.get_model_info()[0]:
                comp = self.get_component(id)

                if isinstance(comp,Component) and comp.resolved and comp.snr>=snr_cut:

                    comp_dist=comp.maj*comp.scale/2
                    if core.resolved:
                        core_dist=core.maj*comp.scale/2
                    else:
                        core_dist=core.res_lim_maj*comp.scale/2
                    delta_x = (comp.x - core.x) * comp.scale
                    delta_y = (comp.y - core.y) * comp.scale

                    """
                    #this part allows to also do this calculation with elliptical components, but we should discuss if we want it like this
                    def calculate_theta():
                        if (delta_y > 0 and delta_x > 0) or (delta_y > 0 and delta_x < 0):
                            return np.arctan(delta_x / delta_y) / np.pi * 180
                        elif delta_y < 0 and delta_x > 0:
                            return np.arctan(delta_x / delta_y) / np.pi * 180 + 180
                        elif delta_y < 0 and delta_x < 0:
                            return np.arctan(delta_x / delta_y) / np.pi * 180 - 180
                        else:
                            return 0

                    theta = calculate_theta()

                    # check core resolution limit
                    theta_maj, theta_min = get_resolution_limit(self.beam_maj, self.beam_min, self.beam_pa, theta, core.snr,
                                                                method=res_lim_method, weighting=self.uvw)

                    new_pos=theta-comp.pos+90
                    new_pos_core=theta-core.pos+90

                    line_comp = Line(Point(0, 0), Point(np.cos(new_pos / 180 * np.pi), np.sin(new_pos / 180 * np.pi)))
                    line_core = Line(Point(0, 0), Point(np.cos(new_pos_core / 180 * np.pi), np.sin(new_pos_core / 180 * np.pi)))

                    core_Ellipse=Ellipse(Point(0,0),hradius=core.maj*comp.scale/2,vradius=core.min*comp.scale/2)
                    comp_Ellipse=Ellipse(Point(0,0),hradius=comp.maj*comp.scale/2,vradius=comp.min*comp.scale/2)

                    if core.maj==0 or core.min==0:
                        core_dist=np.abs(theta_maj/2)
                    else:
                        p1, p2 = core_Ellipse.intersect(line_core)
                        core_dist=np.abs(float(p1.distance(p2))/2)
                    p1, p2 = comp_Ellipse.intersect(line_comp)
                    comp_dist=np.abs(float(p1.distance(p2))/2)
                    """

                    dist=np.sqrt(delta_x**2+delta_y**2)
                    #calculate opening angle
                    angle=np.arctan((comp_dist-core_dist)/dist)/np.pi*180*2

                    angles.append(angle)

                else:
                    logger.debug(f"Component {comp.component_number} unresolved, will not calculate opening angle.")
            else:
                logger.debug(f"Component {id} not found, will skip it.")

        return angles

    def fit_comp_polarization(self):
        """
        Function to fit polarization to existing Stokes I model components. Will use DIFMAP to fit a Stokes Q and
        Stokes Q amplitude to the Stokes I components.
        """


        write_mod_file_from_components(self.components,channel="i",export="tmp/model_q.mod",adv=[True])
        os.system("cp tmp/model_q.mod tmp/model_u.mod")
        comps_q=copy.deepcopy(self.components)
        comps_u=copy.deepcopy(self.components)
        comps_q=modelfit_difmap(self.uvf_file,"tmp/model_q.mod",50,difmap_path,components=comps_q,
                                weighting=self.uvw,channel="q",do_selfcal=True,selfcal_model=self.stokes_i_mod_file)
        comps_u=modelfit_difmap(self.uvf_file,"tmp/model_u.mod",50,difmap_path,components=comps_u,
                                weighting=self.uvw,channel="u",do_selfcal=True,selfcal_model=self.stokes_i_mod_file)

        for j,comp in enumerate(self.components):
            for i in range(len(comps_q)):
                #we need to check the component association (just to be sure)
                if abs(comps_q[i].x-comp.x)<1e-4/comp.scale and abs(comps_q[i].y-comp.y)<1e-4/comp.scale and abs(comps_q[i].maj-comp.maj)<1e-4/comp.scale:
                    #calculate lin_pol and EVPA from Q and U flux
                    lin_pol=np.sqrt(comps_q[i].flux**2+comps_u[i].flux**2)
                    evpa=0.5*np.arctan2(comps_u[i].flux,comps_q[i].flux)/np.pi*180
                    #set lin_pol and evpa of component
                    self.components[j].lin_pol = lin_pol
                    self.components[j].evpa = evpa

                    #get component error in lin pol and evpa
                    if self.fit_comp_pol_errors:
                        #first get q_flux_err
                        S_p, rms = get_comp_peak_rms(comp.x * comp.scale, comp.y * comp.scale,
                                                    self.fits_file, self.uvf_file, "tmp/model_q.mod",
                                                    self.stokes_i_mod_file,channel="q",
                                                    weighting=self.uvw, difmap_path=self.difmap_path)

                        comp_snr_q = S_p / rms

                        if S_p == 0:
                            S_p = 0.00001
                        sigma_p = rms * np.sqrt(1 + comp_snr_q)

                        sigma_t = sigma_p * np.sqrt(1 + (comps_q[i].flux ** 2 / S_p ** 2))
                        q_flux_err = np.sqrt(sigma_t ** 2 + (self.gain_err * comps_q[i].flux) ** 2)

                        # get component error in lin pol and evpa
                        #second get u_flux_err
                        S_p, rms = get_comp_peak_rms(comp.x * comp.scale, comp.y * comp.scale,
                                                     self.fits_file, self.uvf_file, "tmp/model_u.mod",
                                                     self.stokes_i_mod_file, channel="u",
                                                     weighting=self.uvw, difmap_path=self.difmap_path)
                        comp_snr_u = S_p / rms

                        if S_p == 0:
                            S_p = 0.00001
                        sigma_p = rms * np.sqrt(1 + comp_snr_u)

                        sigma_t = sigma_p * np.sqrt(1 + (comps_u[i].flux ** 2 / S_p ** 2))
                        u_flux_err = np.sqrt(sigma_t ** 2 + (self.gain_err * comps_u[i].flux) ** 2)

                        #calculate EVPA and lin_pol error for component:
                        self.components[j].lin_pol_err=abs(np.sqrt(comps_q[i].flux**2*q_flux_err**2+comps_u[i].flux**2*u_flux_err**2)/comp.lin_pol)
                        self.components[j].evpa_err=abs(np.sqrt(comps_q[i].flux**2*u_flux_err**2+comps_u[i].flux**2*q_flux_err**2)/(2*comp.lin_pol**2)/np.pi*180)



    def fit_collimation_profile(self,method="model",jet="Jet",fit_type='brokenPowerlaw',x0=False,s=100,
                                plot_data=True,plot_fit=True,fit_r0=True,shift_r=0,plot="",show=False,label="",color=plot_colors[0],marker=plot_markers[0]):
        """
        Function to fit a collimation profile to the jet/counterjet

        Args:
            method (str): Method to use for collimation profile ('model' to use model components, 'ridgeline' to use ridgeline fit)
            jet (str): Choose whether to do Jet ('Jet'), Counterjet ('Cjet') or both ('Twin')
            fit_type (str): Choose fit_type to use ('brokenPowerlaw' or 'Powerlaw')
            x0_bpl (list[float]): Start values for fit
            plot_data (bool): Choose whether to plot the fitted data
            plot_fit (bool): Choose whether to plot the fit
            fit_r0 (bool): Choose whether to include (r+r0) in fit or just r
            shift_r (float): Shift plot by radius in mas.
            plot (JetProfilePlot): Pass JetProfilePlot to add plots, default will create a new one
            show (bool): Choose whether to show the plot
            label (str): Label for the fitted data/fit
            color (str): Plot color
            marker (str): Plot marker

        Returns:
            plot (JetProfilePlot): Jet profile plot

        """

        fit_fail_jet=False
        fit_fail_counterjet=False

        if method=="model":
            #TODO make it work also for counterjet
            #jet info
            dists=[]
            widths=[]
            width_errs=[]

            #counter jet info
            cdists = []
            cwidths = []
            cwidth_errs = []

            for comp in self.components:
                #if component Jet
                dists.append(comp.distance_to_core*self.scale)
                widths.append(comp.maj*self.scale)
                width_errs.append(comp.maj_err*self.scale)
                #else component counterjet
                    #cdists.append(comp.distance_to_core * self.scale)
                    #cwidths.append(comp.maj * self.scale)
                    #cwidth_errs.append(comp.maj_err * self.scale)

        elif method=="ridgeline":

            #jet info
            dists=self.ridgeline.dist
            widths=self.ridgeline.width
            width_errs=self.ridgeline.width_err

            #counterjet info
            cdists = self.counter_ridgeline.dist
            cwidths = self.counter_ridgeline.width
            cwidth_errs = self.counter_ridgeline.width_err

        else:
            raise Exception("Please specify valid 'method' for fit_collimation_profile ('model', 'ridgeline').")

        if jet=="Jet" or jet=="Twin":
            try:
                beta, sd_beta, chi2, out = fit_width(dists, widths, width_err=width_errs, dist_err=False,s=s,
                                                     fit_type=fit_type,x0=x0,fit_r0=fit_r0)
            except:
                logger.warning("Collimation fit did not work for jet!")
                fit_fail_jet=True

        if jet=="CJet" or jet=="Twin":
            try:
                cbeta, csd_beta, cchi2, cout = fit_width(cdists, cwidths, width_err=cwidth_errs, dist_err=False,s=s,
                                                     fit_type=fit_type,x0=x0,fit_r0=fit_r0)
            except:
                logger.warning("Collimation fit did not work for counter jet!")
                fit_fail_counterjet=True

        if plot=="":
            plot=JetProfilePlot(jet=jet,redshift=self.redshift,shift_r=shift_r)
        else:
            try:
                if plot.jet != jet:
                    raise Exception("Plot has wrong 'jet' type.")
            except:
                raise Exception("Plot is not a valid 'JetProfilePlot'.")

        if plot_data:
            if jet=="Jet":
                plot.plot_profile(dists,widths,width_errs,color,marker,label=label)
            elif jet=="CJet":
                plot.plot_profile(cdists,cwidths,cwidth_errs,color,marker,label=label)
            else:
                plot.plot_profile([dists,cdists],[widths,cwidths],[width_errs,cwidth_errs],color,marker,label=label)

        x=np.linspace(min(dists),max(dists),1000)
        if plot_fit:
            if jet=="Jet" or jet=="Twin":
                if not fit_fail_jet:
                    plot.plot_fit(x, fit_type, beta, sd_beta, chi2, "Jet", color, label=label,fit_r0=fit_r0,s=s)
            if jet=="CJet" or jet=="Twin":
                if not fit_fail_counterjet:
                    plot.plot_fit(x, fit_type, cbeta, csd_beta, cchi2, "CJet", color, label=label,fit_r0=fit_r0,s=s)


        if show:
            plot.plot_legend()
            plt.show()

        return plot

    def plot_uv(self,fig="",ax="",savefig="",show=True):
        """
        Function to plot the uv-coverage, if a .uvf-file is provided.

        Args:
            fig (Matplotlib Figure): Optional input of matplotlib fig
            ax (Matplotlib Ax): Optional input of matplotlib ax
            savefig (string): Path to export the plot
            show (bool): Choose whether to show the plot or not

        Returns:
            fig, ax
        """

        if fig=="" or ax=="":
            fig, ax = plt.subplots(1,1,figsize=(6,6))

        if self.uvf_file!="":
            hdu = fits.open(self.uvf_file)
            u_array = []
            v_array = []

            for scan in hdu[0].data:
                u_array.append(scan[0])
                v_array.append(scan[1])

            for i in range(10):
                try:
                    if "FREQ" in hdu[0].header["CTYPE" + str(i)]:
                        freq_ghz = float(hdu[0].header["CRVAL" + str(i)]) / 1e9  # Frequency in GHz
                except:
                    pass
            # plot it
            ax.scatter(freq_ghz * 10 ** 3 * np.array(u_array), freq_ghz * 10 ** 3 * np.array(v_array), s=0.5,
                        color="tab:blue")
            ax.scatter(-freq_ghz * 10 ** 3 * np.array(u_array), -freq_ghz * 10 ** 3 * np.array(v_array), s=0.5,
                        color="tab:blue")
            ax.invert_xaxis()
            ax.set_xlabel("U (10⁶ $\lambda$)")
            ax.set_ylabel("V (10⁶ $\lambda$)")

            ax.set_aspect("equal")

            if savefig!="":
                fig.savefig(savefig,bbox_inches="tight")

            if show:
                plt.show()

        return fig, ax

__init__(fits_file='', uvf_file='', stokes_i=[], model='', lin_pol=[], evpa=[], pol_from_stokes=True, mask='', ridgeline='', counter_ridgeline='', stokes_q='', stokes_u='', comp_ids=[], auto_identify=True, core_comp_id=0, redshift=0, query_redshift=True, M=0, model_save_dir='tmp/', is_casa_model=False, is_ehtim_model=False, noise_method=noise_method, mfit_err_method=mfit_err_method, res_lim_method=res_lim_method, uvtaper=[1, 0], correct_rician_bias=False, error=0.05, fit_comp_polarization=False, fit_comp_pol_errors=False, gain_err=0.05, uvw=uvw, difmap_path=difmap_path)

Initializes an ImageData object to handle a full-polarization VLBI data set at one epoch and one frequency.

Parameters:
  • fits_file (str, default: '' ) –

    Input .fits file(s) (Stokes I or full polarization, e.g. from CASA)

  • uvf_file (str, default: '' ) –

    Input .uvf file(s)

  • stokes_i (list[list[float]], default: [] ) –

    Input of Stokes-I data as a 2d-array

  • model (str, default: '' ) –

    Input of modelfit .fits or .mod file (e.g., from DIFMAP), for CASA .fits model, set is_casa_model=True

  • lin_pol (list[list[float]], default: [] ) –

    2d array of linear polarized intensity values (if using, set pol_from_stokes=False)

  • evpa (list[list[float]], default: [] ) –

    2d array of Electric Vector Position Angle (EVPA) (if using, set pol_from_stokes=False)

  • pol_from_stokes (bool, default: True ) –

    Choose whether to import data from fits-files or from lin_pol/evpa

  • mask (list[list[bool]], default: '' ) –

    2d-array of an image mask

  • ridgeline (Ridgeline, default: '' ) –

    Ridgeline of the image

  • counter_ridgeline (Ridgeline, default: '' ) –

    Counter ridgeline of the image.

  • stokes_q (str or list[list[float]], default: '' ) –

    Input Stokes-Q .fits file or 2d array of Stokes-Q image

  • stokes_u (str or list[list[float]], default: '' ) –

    Input Stokes-U .fits file or 2d array of Stokes-U image

  • comp_ids (list[int], default: [] ) –

    list of integers to assign as component number (from top to bottom .mod file or .fits header)

  • auto_identify (bool, default: True ) –

    If true and no comp_ids provided components will automatically be named

  • core_comp_id (int, default: 0 ) –

    Component ID of the core component

  • redshift (float, default: 0 ) –

    Redshift of the source

  • query_redshift (bool, default: True ) –

    Choose whether to query redshift automatically from NED

  • M (float, default: 0 ) –

    Black hole mass

  • model_save_dir (str, default: 'tmp/' ) –

    Directory where temporary data for VCAT operations will be stored

  • is_casa_model (bool, default: False ) –

    If using a CASA .fits model for 'model', set to True

  • is_ehtim_model (bool, default: False ) –

    If using a ehtim .txt model file for 'model', set to True

  • noise_method (str, default: noise_method ) –

    Choose method to calculate image noise ('Histogram Fit', 'box', 'Image RMS', 'DIFMAP')

  • mfit_err_method (str, default: mfit_err_method ) –

    Choose method to compute modelcomponent errors ('flat', 'Schinzel12', 'Weaver22')

  • res_lim_method (str, default: res_lim_method ) –

    Choose method to compute component resolution limit ('Kovalev05', 'Lobanov05','beam')

  • correct_rician_bias (bool, default: False ) –

    Choose whether to correct polarization for Rician Bias

  • error (float, default: 0.05 ) –

    Set relative error on the flux density scale

  • fit_comp_polarization (bool, default: False ) –

    Choose whether to fit polarization of modelfit components

  • fit_comp_pol_errors (bool, default: False ) –

    Choose whether to determine lin_pol and evpa errors for components

  • difmap_path (str, default: difmap_path ) –

    Path to the folder of your DIFMAP installation

Source code in vcat/image_data.py
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
def __init__(self,
             fits_file="",
             uvf_file="",
             stokes_i=[],
             model="",
             lin_pol=[],
             evpa=[],
             pol_from_stokes=True,
             mask="",
             ridgeline="",
             counter_ridgeline="",
             stokes_q="",
             stokes_u="",
             comp_ids=[],
             auto_identify=True,
             core_comp_id=0,
             redshift=0,
             query_redshift=True,
             M=0,
             model_save_dir="tmp/",
             is_casa_model=False,
             is_ehtim_model=False,
             noise_method=noise_method, #choose noise method
             mfit_err_method=mfit_err_method,
             res_lim_method=res_lim_method,
             uvtaper=[1,0],
             correct_rician_bias=False,
             error=0.05, #relative error flux densities,
             fit_comp_polarization=False,
             fit_comp_pol_errors=False,
             gain_err=0.05,
             uvw=uvw,
             difmap_path=difmap_path):

    """
    Initializes an ImageData object to handle a full-polarization VLBI data set at one epoch and one frequency.

    Args:
        fits_file (str): Input .fits file(s) (Stokes I or full polarization, e.g. from CASA)
        uvf_file (str): Input .uvf file(s)
        stokes_i (list[list[float]]): Input of Stokes-I data as a 2d-array
        model (str): Input of modelfit .fits or .mod file (e.g., from DIFMAP), for CASA .fits model, set is_casa_model=True
        lin_pol (list[list[float]]): 2d array of linear polarized intensity values (if using, set pol_from_stokes=False)
        evpa (list[list[float]]): 2d array of Electric Vector Position Angle (EVPA) (if using, set pol_from_stokes=False)
        pol_from_stokes (bool): Choose whether to import data from fits-files or from lin_pol/evpa
        mask (list[list[bool]]): 2d-array of an image mask
        ridgeline (Ridgeline): Ridgeline of the image
        counter_ridgeline (Ridgeline): Counter ridgeline of the image.
        stokes_q (str or list[list[float]]): Input Stokes-Q .fits file or 2d array of Stokes-Q image
        stokes_u (str or list[list[float]]): Input Stokes-U .fits file or 2d array of Stokes-U image
        comp_ids (list[int]): list of integers to assign as component number (from top to bottom .mod file or .fits header)
        auto_identify (bool): If true and no comp_ids provided components will automatically be named
        core_comp_id (int): Component ID of the core component
        redshift (float): Redshift of the source
        query_redshift (bool): Choose whether to query redshift automatically from NED
        M (float): Black hole mass
        model_save_dir (str): Directory where temporary data for VCAT operations will be stored
        is_casa_model (bool): If using a CASA .fits model for 'model', set to True
        is_ehtim_model (bool): If using a ehtim .txt model file for 'model', set to True
        noise_method (str): Choose method to calculate image noise ('Histogram Fit', 'box', 'Image RMS', 'DIFMAP')
        mfit_err_method (str): Choose method to compute modelcomponent errors ('flat', 'Schinzel12', 'Weaver22')
        res_lim_method (str): Choose method to compute component resolution limit ('Kovalev05', 'Lobanov05','beam')
        correct_rician_bias (bool): Choose whether to correct polarization for Rician Bias
        error (float): Set relative error on the flux density scale
        fit_comp_polarization (bool): Choose whether to fit polarization of modelfit components
        fit_comp_pol_errors (bool): Choose whether to determine lin_pol and evpa errors for components
        difmap_path (str): Path to the folder of your DIFMAP installation
    """
    if model=="" or not os.path.exists(model):
        self.model_inp=False
    else:
        if fits_file=="":
            fits_file=model
        self.model_inp=True
    self.file_path = fits_file
    self.fits_file = fits_file
    self.lin_pol=lin_pol
    self.evpa=evpa
    self.stokes_i=stokes_i
    self.uvf_file=uvf_file
    self.difmap_path=difmap_path
    self.residual_map_path=""
    self.residual_map = []
    self.noise_method=noise_method
    self.is_casa_model=is_casa_model
    self.is_ehtim_model=is_ehtim_model
    self.model_save_dir=model_save_dir
    self.correct_rician_bias=correct_rician_bias
    self.fit_comp_pol = fit_comp_polarization
    self.fit_comp_pol_errors = fit_comp_pol_errors
    self.error=error
    self.gain_err=gain_err
    self.uvtaper=uvtaper
    self.uvw=uvw
    self.M=M
    if ridgeline=="":
        self.ridgeline=Ridgeline()
    else:
        self.ridgeline=ridgeline
    if counter_ridgeline=="":
        self.counter_ridgeline=Ridgeline()
    else:
        self.counter_ridgeline=counter_ridgeline


    if fits_file=="":
        #if no fits file was loaded try to get the dirty image
        if uvf_file!="":
            logger.warning("Only .uvf file given, will create dirty image with npix=1024 and pxsize=0.05!")
            #get dirty map from uvf file
            get_residual_map(uvf_file, "","", difmap_path=difmap_path, channel="i",
                             save_location="/tmp/dirty_image.fits", weighting=self.uvw,
                             npix=1024,pxsize=0.05, do_selfcal=False)
            fits_file="/tmp/dirty_image.fits"
            self.fits_file=fits_file
            self.file_path=fits_file
        else:
            self.no_fits=True

    # Read clean files in
    if self.fits_file!="":
        hdu_list=fits.open(self.fits_file)
        self.hdu_list = hdu_list
        self.no_fits=False


    self.stokes_q_path=stokes_q
    self.stokes_u_path=stokes_u
    stokes_q_path=stokes_q
    stokes_u_path=stokes_u
    #read stokes data from input files if defined
    if stokes_q != "":
        try:
            q_fits=fits.open(stokes_q)
            try:
                stokes_q = q_fits[0].data[0, 0, :, :]
            except:
                stokes_q = q_fits[0].data
            q_fits.close()
        except:
            stokes_q=stokes_q
    else:
        stokes_q=[]

    if stokes_u != "":
        try:
            u_fits=fits.open(stokes_u)
            try:
                stokes_u = u_fits[0].data[0, 0, :, :]
            except:
                stokes_u = u_fits[0].data
            u_fits.close()
        except:
            stokes_u = stokes_u
    else:
        stokes_u=[]

    self.stokes_u=stokes_u
    self.stokes_q=stokes_q

    # Set name
    self.name = hdu_list[0].header["OBJECT"]
    self.date = get_date(fits_file)
    self.mjd = Time(self.date).mjd
    self.year = Time(self.date).decimalyear
    try:
        self.freq = float(hdu_list[0].header["CRVAL3"])  # frequency in Hertz
    except:
        try:
            self.freq = float(hdu_list[0].header["FREQ"])
        except:
            self.freq = 15000000000


    #get redshift
    if redshift==0 and query_redshift:
        try:
            self.redshift = np.average(Ned.get_table(self.name, table="redshifts")["Published Redshift"])
            logger.debug(f"Redshift for {self.name} automatically determined from NED: {self.redshift}")
        except:
            self.redshift = 0.00
    else:
        self.redshift=redshift

    # Unit selection and adjustment
    self.degpp = abs(hdu_list[0].header["CDELT1"])  # degree per pixel

    if self.degpp > 0.01:
        self.unit = 'deg'
        self.scale = 1.
    elif self.degpp > 6.94e-6:
        self.unit = 'arcmin'
        self.scale = 60.
    elif self.degpp > 1.157e-7:
        self.scale = 60. * 60.
        self.unit = 'arcsec'
    else:
        self.scale = 60. * 60. * 1000.
        self.unit = 'mas'
    # FMP suggestion: add microarcseconds for possible scale

    # Set beam parameters
    try:
        # DIFMAP style
        self.beam_maj = hdu_list[0].header["BMAJ"] * self.scale
        self.beam_min = hdu_list[0].header["BMIN"] * self.scale
        self.beam_pa = hdu_list[0].header["BPA"]
    except:
        try:
            # TODO check if this is actually working!
            # CASA style
            self.beam_maj, self.beam_min, self.beam_pa, na, nb = hdu_list[1].data[0]
            self.beam_maj = self.beam_maj * 1000  # convert to mas
            self.beam_min = self.beam_min * 1000  # convert to mas
        except:
            logger.warning("No input beam information!")
            self.beam_maj = 0
            self.beam_min = 0
            self.beam_pa = 0


    # Convert Pixel into unit
    self.X = np.linspace(0, hdu_list[0].header["NAXIS1"], hdu_list[0].header["NAXIS1"],
                    endpoint=False)  # NAXIS1: number of pixels at R.A.-axis
    for j in range(len(self.X)):
        self.X[j] = (self.X[j] - hdu_list[0].header["CRPIX1"]) * hdu_list[0].header[
            "CDELT1"] * self.scale  # CRPIX1: reference pixel, CDELT1: deg/pixel
    self.X[int(hdu_list[0].header["CRPIX1"])] = 0.0

    self.Y = np.linspace(0, hdu_list[0].header["NAXIS2"], hdu_list[0].header["NAXIS2"],
                    endpoint=False)  # NAXIS2: number of pixels at Dec.-axis
    for j in range(len(self.Y)):
        self.Y[j] = (self.Y[j] - hdu_list[0].header["CRPIX2"]) * hdu_list[0].header[
            "CDELT2"] * self.scale  # CRPIX2: reference pixel, CDELT2: deg/pixel
    self.Y[int(hdu_list[0].header["CRPIX2"])] = 0.0

    self.extent = np.max(self.X), np.min(self.X), np.min(self.Y), np.max(self.Y)

    if not self.no_fits:
        self.image_data = hdu_list[0].data
        try:
            self.Z = self.image_data[0, 0, :, :]
        except:
            self.Z = self.image_data

    else:
        try:
            self.Z=self.stokes_i
        except:
            pass


    #handle model loading
    self.model_file_path = model
    if self.model_file_path=="":
        self.model_file_path=self.fits_file
    elif not isinstance(model, pd.DataFrame) and not is_fits_file(model) and not is_casa_model and not is_ehtim_model: #Careful, this may not work for CASA style .fits files!
        #this means it is a .mod file -> will create .fits file from it
        os.makedirs(model_save_dir + "mod_files_model/", exist_ok=True)
        new_model_fits=model_save_dir+"mod_files_model/" + self.name + "_" + self.date + "_" + "{:.0f}".format(self.freq/1e9).replace(".","_") + "GHz"
        if difmap_path!="" and uvf_file!="":
            # use difmap to load the model and create model .fits file and store it as model_file_path
            fold_with_beam([self.fits_file],difmap_path=self.difmap_path,
                           bmaj=self.beam_maj, bmin=self.beam_min, posa=self.beam_pa,
                           outname=new_model_fits, n_pixel=len(self.X)*2, pixel_size=self.degpp*self.scale,
                           mod_files=[model],clean_mod_files=[model], uvf_files=[uvf_file], do_selfcal=True)

        else:
            #TODO does not work for AIPS .fits!!!
            #copy the clean .fits file and write the model info to the header and store it as model_file_path
            #get model first:
            model_df = getComponentInfo(model,scale=self.scale)
            #now modify fits file
            f=fits.open(self.fits_file)
            # FITS column names
            fits_columns = ["FLUX","DELTAX","DELTAY","MAJOR AX","MINOR AX","POSANGLE","TYPE OBJ"]
            dtype=np.dtype([
                ('FLUX', '>f4'),
                ('DELTAX', '>f4'),
                ('DELTAY', '>f4'),
                ('MAJOR AX', '>f4'),
                ('MINOR AX', '>f4'),
                ('POSANGLE', '>f4'),
                ('TYPE OBJ', '>f4')
                ])


            # Manually map DataFrame columns to FITS structure
            column_mapping = {
                "FLUX": "Flux",
                "DELTAX": "Delta_x",
                "DELTAY": "Delta_y",
                "MAJOR AX": "Major_axis",
                "MINOR AX": "Minor_axis",
                "POSANGLE": "PA",
                "TYPE OBJ": "Typ_obj",
            }

            # Ensure correct order and match dtype
            new_data_array = np.array(
                [tuple(df[column_mapping[col]] for col in fits_columns) for _, df in model_df.iterrows()],
                dtype=dtype  # Ensure the same dtype as the original FITS table
            )

            # Overwrite the FITS table with the new structured array
            f[1].data = new_data_array
            f[1].header['XTENSION'] = 'BINTABLE'
            f.writeto(new_model_fits+".fits",overwrite=True)
            f.close()

        self.model_file_path = new_model_fits + ".fits"
        model = self.model_file_path

    #overwrite fits image data with stokes_i input if given
    if not stokes_i==[]:
        self.Z=stokes_i

    #read in polarization input

    # check if FITS file contains more than just Stokes I
    self.only_stokes_i = False
    if hdu_list[0].data.shape[0] == 1:
        self.only_stokes_i = True
    elif len(hdu_list[0].data.shape) == 2:
        self.only_stokes_i = True
    if (np.shape(self.Z) == np.shape(stokes_q) and np.shape(self.Z) == np.shape(stokes_u) and
                    np.shape(stokes_q) == np.shape(stokes_u)):
        self.only_stokes_i = True #in this case override the polarization data with the data that was input to Q and U

    if self.only_stokes_i:
        #DIFMAP Style
        pols=1
        # Check if linpol/evpa/stokes_i have same dimensions!
        dim_wrong = True
        if pol_from_stokes:
            if (np.shape(self.Z) == np.shape(stokes_q) and np.shape(self.Z) == np.shape(stokes_u) and
                    np.shape(stokes_q) == np.shape(stokes_u)):
                dim_wrong = False
                self.stokes_q=stokes_q
                self.stokes_u=stokes_u
            else:
                self.lin_pol = np.zeros(np.shape(self.Z))
                self.evpa = np.zeros(np.shape(self.Z))
        else:
            if (np.shape(self.Z) == np.shape(lin_pol) and np.shape(self.Z) == np.shape(evpa) and
                    np.shape(lin_pol) == np.shape(evpa)):
                dim_wrong = False
                self.lin_pol=lin_pol
                self.evpa=evpa
            else:
                self.lin_pol=np.zeros(np.shape(self.Z))
                self.evpa=np.zeros(np.shape(self.Z))
        try:
            self.image_data[0, 0, :, :] = self.Z
        except:
            self.image_data = self.Z
    else:
        #CASA STYLE
        pols=3
        dim_wrong=False
        self.stokes_q=hdu_list[0].data[1,0,:,:]
        self.stokes_u=hdu_list[0].data[2,0,:,:]
        self.image_data[1, 0, :, :] = self.stokes_q
        self.image_data[2, 0, :, :] = self.stokes_u

    if pol_from_stokes and not dim_wrong:
        self.lin_pol = np.sqrt(self.stokes_q ** 2 + self.stokes_u ** 2)
        self.evpa = 0.5 * np.arctan2(self.stokes_u, self.stokes_q)
        #shift to 0-180 (only positive)
        self.evpa[np.where(self.evpa<0)] = self.evpa[np.where(self.evpa<0)]+np.pi

    try:
        self.difmap_noise = float(hdu_list[0].header["NOISE"])
    except:
        self.difmap_noise = 0


    try:
        q_fits=fits.open(stokes_q_path)
        u_fits=fits.open(stokes_u_path)
        self.difmap_pol_noise = np.sqrt(float(q_fits[0].header["NOISE"])**2+float(u_fits[0].header["NOISE"])**2)
        q_fits.close()
        u_fits.close()
    except:
        self.difmap_pol_noise = 0

    #calculate image noise according to the method selected
    logger.debug("Calculating Stokes I noise")
    unused, levs_i = get_sigma_levs(self.Z, 1,noise_method=self.noise_method,noise=self.difmap_noise) #get noise for stokes i

    if np.sum(self.lin_pol)!=0:
        logger.debug("Calculating Pol noise")
        unused, levs_pol = get_sigma_levs(self.lin_pol, 1,noise_method=self.noise_method,noise=self.difmap_noise) #get noise for polarization
    else:
        levs_pol=[0]

    self.noise = levs_i[0]
    self.pol_noise = levs_pol[0]

    #calculate integrated total flux in image
    self.integrated_flux_image = JyPerBeam2Jy(np.sum(self.Z), self.beam_maj, self.beam_min, self.degpp * self.scale)

    #calculate integrated pol flux in image
    self.integrated_pol_flux_image = JyPerBeam2Jy(np.sum(self.lin_pol),self.beam_maj,self.beam_min,self.degpp*self.scale)

    if not is_casa_model and not self.is_ehtim_model:
        try:
            #TODO basic checks if file is valid
            self.model=getComponentInfo(self.model_file_path, scale=self.scale)
            #write .mod file from .fits input
            os.makedirs(model_save_dir,exist_ok=True)
            os.makedirs(model_save_dir+"mod_files_model/",exist_ok=True)
            if self.model is not None:
                self.model_mod_file=model_save_dir+"mod_files_model/" + self.name + "_" + self.date + "_" + "{:.0f}".format(self.freq/1e9).replace(".","_") + "GHz.mod"
                write_mod_file(self.model, self.model_mod_file, freq=self.freq)
        except:
            logger.warning("FITS file does not contain model extension!")
    if self.is_ehtim_model:
        os.makedirs(model_save_dir, exist_ok=True)
        os.makedirs(model_save_dir + "mod_files_clean", exist_ok=True)
        os.makedirs(model_save_dir + "mod_files_q", exist_ok=True)
        os.makedirs(model_save_dir + "mod_files_u", exist_ok=True)
        self.stokes_i_mod_file = model_save_dir + "mod_files_clean/" + self.name + "_" + self.date + "_" + "{:.0f}".format(
            self.freq / 1e9).replace(".", "_") + "GHz.mod"
        write_mod_file_from_ehtim(self,channel="i", export=self.stokes_i_mod_file)
        self.stokes_q_mod_file = model_save_dir + "mod_files_q/" + self.name + "_" + self.date + "_" + "{:.0f}".format(
            self.freq / 1e9).replace(".", "_") + "GHz.mod"
        write_mod_file_from_ehtim(self,channel="q", export=self.stokes_q_mod_file)
        self.stokes_u_mod_file = model_save_dir + "mod_files_u/" + self.name + "_" + self.date + "_" + "{:.0f}".format(
            self.freq / 1e9).replace(".", "_") + "GHz.mod"
        write_mod_file_from_ehtim(self,channel="u", export=self.stokes_u_mod_file)
        self.model = getComponentInfo(self.stokes_i_mod_file, scale=self.scale,year=self.year,mjd=self.mjd,date=self.date)
        self.model_mod_file=self.stokes_i_mod_file

    elif is_casa_model:
        #TODO basic checks if file is valid
        os.makedirs(model_save_dir,exist_ok=True)
        os.makedirs(model_save_dir+"mod_files_clean", exist_ok=True)
        os.makedirs(model_save_dir+"mod_files_q", exist_ok=True)
        os.makedirs(model_save_dir + "mod_files_u", exist_ok=True)
        self.stokes_i_mod_file=model_save_dir+"mod_files_clean/" + self.name + "_" + self.date + "_" + "{:.0f}".format(self.freq/1e9).replace(".","_") + "GHz.mod"
        self.write_mod_file_from_casa(channel="i", export=self.stokes_i_mod_file)
        self.stokes_q_mod_file=model_save_dir+"mod_files_q/"+ self.name + "_" + self.date + "_" + "{:.0f}".format(self.freq/1e9).replace(".","_") + "GHz.mod"
        self.write_mod_file_from_casa(channel="q", export=self.stokes_q_mod_file)
        self.stokes_u_mod_file=model_save_dir+"mod_files_u/"+ self.name + "_" + self.date + "_" + "{:.0f}".format(self.freq/1e9).replace(".","_") + "GHz.mod"
        self.write_mod_file_from_casa(channel="u", export=self.stokes_u_mod_file)
        self.model = getComponentInfo(self.stokes_i_mod_file, scale=self.scale)
        self.model_mod_file = self.stokes_i_mod_file
    try:
        os.makedirs(model_save_dir+"mod_files_clean", exist_ok=True)
        os.makedirs(model_save_dir+"mod_files_q", exist_ok=True)
        os.makedirs(model_save_dir+"mod_files_u", exist_ok=True)
        #try to import model which is attached to the main .fits file
        model_i = getComponentInfo(fits_file, scale=self.scale)
        self.model_i = model_i
        self.stokes_i_mod_file=model_save_dir+"mod_files_clean/"+ self.name + "_" + self.date + "_" + "{:.0f}".format(self.freq/1e9).replace(".","_") + "GHz.mod"
        write_mod_file(model_i, self.stokes_i_mod_file, freq=self.freq)
        #load stokes q and u clean models
        self.model_q=getComponentInfo(stokes_q_path, scale=self.scale)
        self.stokes_q_mod_file=model_save_dir+"mod_files_q/"+ self.name + "_" + self.date + "_" + "{:.0f}".format(self.freq/1e9).replace(".","_") + "GHz.mod"
        write_mod_file(self.model_q, self.stokes_q_mod_file, freq=self.freq)
        self.model_u=getComponentInfo(stokes_u_path, scale=self.scale)
        self.stokes_u_mod_file=model_save_dir+"mod_files_u/"+ self.name + "_" + self.date + "_" + "{:.0f}".format(self.freq/1e9).replace(".","_") + "GHz.mod"
        write_mod_file(self.model_u, self.stokes_u_mod_file, freq=self.freq)
    except:
        pass

    #calculate residual map if uvf and modelfile present
    if self.uvf_file!="" and self.model_file_path!="" and not is_casa_model and  self.difmap_path!="":
        os.makedirs(model_save_dir+"residual_maps", exist_ok=True)
        self.residual_map_path = model_save_dir + "residual_maps/" + self.name + "_" + self.date + "_" + "{:.0f}".format(self.freq / 1e9).replace(".",
                                                                                                             "_") + "GHz_residual.fits"

        get_residual_map(self.uvf_file,self.stokes_i_mod_file,self.stokes_i_mod_file,
                         difmap_path=self.difmap_path,
                         save_location=self.residual_map_path,weighting=self.uvw,
                         npix=len(self.X),pxsize=self.degpp*self.scale)

        self.residual_map=fits.open(self.residual_map_path)[0].data[0,0,:,:]

    #save modelfit (or clean) components as Component objects
    self.components=[]

    if self.model_inp:
        #only do this if a model was specified explicitely
        for ind,comp in self.model.reset_index().iterrows():
            #use provided comp_id
            try:
                comp_id=comp_ids[ind]
            except:
                #assign automatic comp_id
                if auto_identify:
                    comp_id=ind
                else:
                    comp_id=-1

            #check if component is the core component
            if comp_id==core_comp_id:
                is_core=True
            else:
                is_core=False

            #calculate component SNR
            if self.uvf_file!="" and self.difmap_path!="":
                S_p, rms = get_comp_peak_rms(comp["Delta_x"]*self.scale,comp["Delta_y"]*self.scale,
                                             self.fits_file,self.uvf_file,self.model_mod_file,self.stokes_i_mod_file,
                                             weighting=self.uvw, difmap_path=self.difmap_path)
                comp_snr = S_p/rms
            else:
                if ind == 0:
                    logger.warning('No .uvfits file or difmap path provided. Calculating modelfit component SNR based on the clean map only.')
                # TODO: use .fits file from Gaussian modelfit instead of clean map
                S_p = self.get_pixel_value(comp["Delta_x"]*self.scale,
                                               comp["Delta_y"]*self.scale)
                rms=self.noise
                comp_snr = S_p/rms

            component=Component(comp["Delta_x"],comp["Delta_y"],comp["Major_axis"],comp["Minor_axis"],
                                comp["PA"],comp["Flux"],self.date,self.mjd,Time(self.mjd,format="mjd").decimalyear,component_number=comp_id,
                                redshift=redshift, is_core=is_core,beam_maj=self.beam_maj,beam_min=self.beam_min,beam_pa=self.beam_pa,
                                freq=self.freq,noise=rms, scale=self.scale, snr=comp_snr,error_method=mfit_err_method,
                                res_lim_method=res_lim_method,gain_err=self.gain_err)
            self.components.append(component)

        #set core
        self.set_core_component(core_comp_id)
        if self.uvf_file!="" and fit_comp_polarization:
            logger.debug("Retrieving polarization information for modelfit components.")
            self.fit_comp_polarization()
        else:
            if fit_comp_polarization:
                logger.warning("Trying to fit component polarization, but no uvf file loaded!")
            else:
                logger.debug("Not fitting component polarization")


    hdu_list.close()

    #calculate cleaned flux density from mod files
    #first stokes I
    try:
        self.integrated_flux_clean=total_flux_from_mod(self.model_save_dir+"mod_files_clean/"  + self.name + "_" +
                                                       self.date + "_" + "{:.0f}".format(self.freq/1e9).replace(".","_") + "GHz.mod")
    except:
        self.integrated_flux_clean = 0
    #and then polarization
    try:
        flux_q=total_flux_from_mod(self.model_save_dir+"mod_files_q/" + self.name + "_" + self.date + "_" +
                                   "{:.0f}".format(self.freq/1e9).replace(".","_") + "GHz.mod")
        flux_u=total_flux_from_mod(self.model_save_dir+"mod_files_u/" + self.name + "_" + self.date + "_" +
                                   "{:.0f}".format(self.freq/1e9).replace(".","_") + "GHz.mod")
        self.integrated_pol_flux_clean=np.sqrt(flux_u**2+flux_q**2)
        self.frac_pol = self.integrated_pol_flux_clean / self.integrated_flux_clean
        self.evpa_average = 0.5*np.arctan2(flux_u,flux_q)
    except:
        self.integrated_pol_flux_clean=0
        self.frac_pol = 0

    #correct rician bias
    if correct_rician_bias:
        lin_pol_sqr = (self.lin_pol ** 2 - self.pol_noise ** 2)
        lin_pol_sqr[lin_pol_sqr < 0.0] = 0.0
        self.lin_pol = np.sqrt(lin_pol_sqr)

    # initialize mask
    if len(mask)==0:
        self.mask = np.zeros_like(self.Z, dtype=bool)
        #test masking
        #self.mask[0:200]=np.ones_like(self.Z[0:200],dtype=bool)
        #self.masking(mask_type="cut_left",args=-200)
        #set mask where Image is None
        self.mask[np.isnan(self.Z)]=True
    else:
        if np.shape(mask) != np.shape(self.Z):
            logger.warning("Mask input format invalid, Mask reset to no mask.")
            self.mask = np.zeros_like(self.Z, dtype=bool)
        else:
            self.mask=mask

    # additional parameters only used for spectral index type data
    self.is_spix=False
    self.spix=[]
    self.spix_vmin=-3
    self.spix_vmax=5

    #additional parameter only used for rotation measure data
    self.is_rm=False
    self.rm=[]
    self.rm_vmin=""
    self.rm_vmax=""

    # additional parameter only used for Spectral turnover data
    self.is_turnover = False
    self.turnover = []
    self.turnover_flux = []
    self.turnover_error = []
    self.turnover_chi_sq = []

align(image_data2, masked_shift=True, method='cross_correlation', beam_arg='common', auto_regrid=False, useDIFMAP=True, comp_ids='', weight_by_comp_err=True)

This function aligns the image to a reference image (image_data2).

Parameters:
  • image_data2 (ImageData) –

    ImageData object of the reference image

  • masked_shift (bool, default: True ) –

    Choose whether to consider the image masks for alignment

  • method

    Choose alignment method (Options: 'cross_correlation', 'brightest', 'modelcomp')

  • beam_arg (str, default: 'common' ) –

    Choose which common beam to use (Options: 'common', 'max', 'min'), only applied when auto_regrid=True

  • auto_regrid (bool, default: False ) –

    Choose whether to automatically regrid and restore both images to a common beam and image size.

  • useDIFMAP (bool, default: True ) –

    Choose whether to use DIFMAP for image operations or not.

  • comp_ids (int or list[int], default: '' ) –

    Component IDs to use for the alignment in 'modelcomp' mode.

Returns:
  • image( ImageData ) –

    aligned imaged (possibly also regridded and restored if auto_regrid=True).

Source code in vcat/image_data.py
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
def align(self,image_data2,masked_shift=True,method="cross_correlation",beam_arg="common", auto_regrid=False,
          useDIFMAP=True,comp_ids="",weight_by_comp_err=True):
    """
    This function aligns the image to a reference image (image_data2).

    Args:
        image_data2 (ImageData): ImageData object of the reference image
        masked_shift (bool): Choose whether to consider the image masks for alignment
        method: Choose alignment method (Options: 'cross_correlation', 'brightest', 'modelcomp')
        beam_arg (str): Choose which common beam to use (Options: 'common', 'max', 'min'), only applied when auto_regrid=True
        auto_regrid (bool): Choose whether to automatically regrid and restore both images to a common beam and image size.
        useDIFMAP (bool): Choose whether to use DIFMAP for image operations or not.
        comp_ids (int or list[int]): Component IDs to use for the alignment in 'modelcomp' mode.

    Returns:
        image (ImageData): aligned imaged (possibly also regridded and restored if auto_regrid=True).
    """
    if self==image_data2:
        return self

    if ((self.Z.shape != image_data2.Z.shape) or self.degpp != image_data2.degpp) or auto_regrid:
        if auto_regrid:
            # if this is selected will automatically convolve with common beam and regrid
            logger.info("Automatically regridding image to minimum pixelsize, smallest FOV and common beam")

            #determin common image parameters
            pixel_size=np.min([self.degpp*self.scale,image_data2.degpp*image_data2.scale])
            #TODO: change this to maximum FoV? (to make sure no information is lost in any map)
            # aligning this also with the edit by FMP in image_cube.py regrid function
            min_fov=np.min([self.degpp*len(self.X)*self.scale,image_data2.degpp*len(image_data2.X)*self.scale])
            npix=int(min_fov/pixel_size)

            #get common beam
            common_beam=get_common_beam([self.beam_maj,image_data2.beam_maj],
                                        [self.beam_min,image_data2.beam_min],
                                        [self.beam_pa,image_data2.beam_pa],arg=beam_arg)

            #regrid images
            image_self = self.copy()
            # convolve with common beam
            image_self = image_self.regrid(npix, pixel_size, useDIFMAP=useDIFMAP)
            image_self = image_self.restore(common_beam[0], common_beam[1], common_beam[2], useDIFMAP=useDIFMAP)

            # same for image 2
            image_data2 = image_data2.regrid(npix, pixel_size, useDIFMAP=useDIFMAP)
            image_data2 = image_data2.restore(common_beam[0], common_beam[1], common_beam[2], useDIFMAP=useDIFMAP)



        else:
            if not (method=="modelcomp" or method=="model_comp" or method=="model"):
                logger.warning("Images do not have the same npix and pixelsize, please regrid first or use auto_regrid=True.")
                return self
            else:
                image_self=self.copy()
    else:
        image_self=self.copy()

    if method=="cross_correlation" or method=="crosscorrelation":
        if (np.all(image_data2.mask==False) and np.all(image_self.mask==False)) or masked_shift==False:

            shift,error,diffphase = phase_cross_correlation(image_data2.Z,image_self.Z,upsample_factor=100)
            logger.info('will apply shift (x,y): [{} : {}] {}'.format(-shift[1]*image_self.scale*image_self.degpp, shift[0]*image_self.scale*image_self.degpp,self.unit))
        else:
            # contrary to the skikit-image documentation, only the shift is returned for masked cross-correlation
            shift = phase_cross_correlation(image_data2.Z,image_self.Z,upsample_factor=100,reference_mask=image_data2.mask,moving_mask=image_self.mask)
            logger.info('will apply shift (x,y): [{} : {}] {}'.format(-shift[1]*image_self.scale*image_self.degpp, shift[0]*image_self.scale*image_self.degpp,self.unit))

    elif method=="brightest":
        #align images on brightest pixel
        #find brightest pixel of reference image and image
        x_ind,y_ind = np.unravel_index(np.argmax(image_data2.Z), image_data2.Z.shape)
        x_,y_ = np.unravel_index(np.argmax(image_self.Z), image_self.Z.shape)

        shift=[y_ind-y_,x_ind-x_]
        logger.info('will apply shift (x,y): [{} : {}] {}'.format(-shift[1] * image_self.scale * image_self.degpp,
                                                             shift[0] * image_self.scale * image_self.degpp,self.unit))
    elif method=="modelcomp" or method=="model_comp" or method=="model":
        #get models of both images
        comps1=image_self.components
        ref_comps=image_data2.components

        if comp_ids=="":
            raise Exception("Please specify valid component IDs with 'comp_ids=...'")
        else:
            if comp_ids=="all":
                #find all possible component ids
                comp_ids=[]
                for comp in image_self.components:
                    comp_ids.append(comp.component_number)
                for comp in image_data2.components:
                    comp_ids.append(comp.component_number)

                comp_ids=np.unique(comp_ids)

            comp_ids = [comp_ids] if isinstance(comp_ids,int) else comp_ids
            x_shifts=[]
            y_shifts=[]
            x_shift_err=[]
            y_shift_err=[]
            for comp_id in comp_ids:
                #get component from comps1:
                found=False
                for comp in comps1:
                    if comp.component_number==comp_id:
                        align_comp=comp
                        found=True
                if not found:
                    align_comp=""
                found=False
                for ref_comp in ref_comps:
                    if ref_comp.component_number==comp_id:
                        align_comp_ref=ref_comp
                        found=True
                if not found:
                    align_comp_ref=""

                if align_comp!="" and align_comp_ref!="":
                    #this means a component with the given comp_id was found in both images
                    #calculate shift:
                    x1=align_comp.x*image_self.scale
                    x_ref=align_comp_ref.x*image_data2.scale
                    y1=align_comp.y*image_self.scale
                    y_ref=align_comp_ref.y*image_data2.scale

                    x_shifts.append(x1-x_ref)
                    y_shifts.append(y_ref-y1)
                    x_shift_err.append(np.sqrt((align_comp.x_err*image_self.scale)**2+(align_comp_ref.x_err*image_data2.scale)**2))
                    y_shift_err.append(np.sqrt((align_comp.y_err*image_self.scale)**2+(align_comp_ref.y_err*image_data2.scale)**2))
                else:
                    logger.warning(f"Did no find component with id {comp_id} in both images, skipping it")

            #take mean shift if multiple components were used
            if len(y_shifts)==0:
                logger.warning("No matching components found, will not apply a shift.")
                return self
            else:
                if weight_by_comp_err:
                    # Compute weights as inverse variance
                    weights_x = 1 / np.array(x_shift_err)**2
                    weights_y = 1/ np.array(y_shift_err)**2

                    # Weighted mean
                    x_shift_final = np.sum(weights_x * np.array(x_shifts)) / np.sum(weights_x)
                    y_shift_final = np.sum(weights_y * np.array(y_shifts)) / np.sum(weights_y)
                else:
                    x_shift_final=np.mean(x_shifts)
                    y_shift_final=np.mean(y_shifts)

                shift=[y_shift_final/image_self.scale/image_self.degpp,x_shift_final/image_self.scale/image_self.degpp]
                logger.info('will apply shift (x,y): [{} : {}] {}'.format(-shift[1] * image_self.scale * image_self.degpp,
                                                                   shift[0] * image_self.scale * image_self.degpp,self.unit))


    else:
        warning.warn("Please use valid align method ('cross_correlation','brightest').")

    #shift shifted image
    return image_self.shift(-shift[1]*image_self.scale*image_self.degpp,shift[0]*image_self.scale*image_self.degpp,useDIFMAP=useDIFMAP)

calculate_opening_angle(ids='', snr_cut=1)

Calculates the opening angle for circular Gauss components between the core component and a given component Args: ids (int, list[int]): Component ID of component to calculate the opening angle for

Returns:
  • angle( list[float] ) –

    Opening angles in degrees

Source code in vcat/image_data.py
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
def calculate_opening_angle(self,ids="", snr_cut=1):
    """
    Calculates the opening angle for circular Gauss components between the core component and a given component
    Args:
        ids (int, list[int]): Component ID of component to calculate the opening angle for

    Returns:
        angle (list[float]): Opening angles in degrees
    """

    if isinstance(ids,list):
        ids=ids
    elif isinstance(ids,int):
        ids=[ids]
    else:
        if not isinstance(ids,str) or ids!="":
            raise Exception("Invalid IDs provided.")
        else:
            ids,core_id=self.get_model_info()
            ids.remove(core_id)

    core=self.get_core_component()
    angles = []

    for id in ids:
        if id in self.get_model_info()[0]:
            comp = self.get_component(id)

            if isinstance(comp,Component) and comp.resolved and comp.snr>=snr_cut:

                comp_dist=comp.maj*comp.scale/2
                if core.resolved:
                    core_dist=core.maj*comp.scale/2
                else:
                    core_dist=core.res_lim_maj*comp.scale/2
                delta_x = (comp.x - core.x) * comp.scale
                delta_y = (comp.y - core.y) * comp.scale

                """
                #this part allows to also do this calculation with elliptical components, but we should discuss if we want it like this
                def calculate_theta():
                    if (delta_y > 0 and delta_x > 0) or (delta_y > 0 and delta_x < 0):
                        return np.arctan(delta_x / delta_y) / np.pi * 180
                    elif delta_y < 0 and delta_x > 0:
                        return np.arctan(delta_x / delta_y) / np.pi * 180 + 180
                    elif delta_y < 0 and delta_x < 0:
                        return np.arctan(delta_x / delta_y) / np.pi * 180 - 180
                    else:
                        return 0

                theta = calculate_theta()

                # check core resolution limit
                theta_maj, theta_min = get_resolution_limit(self.beam_maj, self.beam_min, self.beam_pa, theta, core.snr,
                                                            method=res_lim_method, weighting=self.uvw)

                new_pos=theta-comp.pos+90
                new_pos_core=theta-core.pos+90

                line_comp = Line(Point(0, 0), Point(np.cos(new_pos / 180 * np.pi), np.sin(new_pos / 180 * np.pi)))
                line_core = Line(Point(0, 0), Point(np.cos(new_pos_core / 180 * np.pi), np.sin(new_pos_core / 180 * np.pi)))

                core_Ellipse=Ellipse(Point(0,0),hradius=core.maj*comp.scale/2,vradius=core.min*comp.scale/2)
                comp_Ellipse=Ellipse(Point(0,0),hradius=comp.maj*comp.scale/2,vradius=comp.min*comp.scale/2)

                if core.maj==0 or core.min==0:
                    core_dist=np.abs(theta_maj/2)
                else:
                    p1, p2 = core_Ellipse.intersect(line_core)
                    core_dist=np.abs(float(p1.distance(p2))/2)
                p1, p2 = comp_Ellipse.intersect(line_comp)
                comp_dist=np.abs(float(p1.distance(p2))/2)
                """

                dist=np.sqrt(delta_x**2+delta_y**2)
                #calculate opening angle
                angle=np.arctan((comp_dist-core_dist)/dist)/np.pi*180*2

                angles.append(angle)

            else:
                logger.debug(f"Component {comp.component_number} unresolved, will not calculate opening angle.")
        else:
            logger.debug(f"Component {id} not found, will skip it.")

    return angles

center(mode='stokes_i', useDIFMAP=True)

Function to center the brightest pixel of the image.

Parameters:
  • mode

    Choose which map to use ('stokes_i', 'lin_pol','core')

  • useDIFMAP

    Choose whether to use DIFMAP or not.

Returns:
  • Shifted ImageData object

Source code in vcat/image_data.py
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
def center(self,mode="stokes_i",useDIFMAP=True):
    """
    Function to center the brightest pixel of the image.

    Args:
        mode: Choose which map to use ('stokes_i', 'lin_pol','core')
        useDIFMAP: Choose whether to use DIFMAP or not.

    Returns:
        Shifted ImageData object
    """

    if mode=="stokes_i" or mode=="lin_pol" or mode=="linpol":
        if mode=="stokes_i":
            ref_image=self.Z
        elif mode=="lin_pol" or mode=="linpol":
            ref_image=self.lin_pol

        # find brightest pixel of reference image and center of current image
        x_ind, y_ind = int(len(self.X)/2),int(len(self.Y)/2)
        x_, y_ = np.unravel_index(np.argmax(ref_image), ref_image.shape)

        shift = [y_ind - y_, x_ind - x_]
        logger.info('will apply shift (x,y): [{} : {}] {}'.format(-shift[1] * self.scale * self.degpp,
                                                             shift[0] * self.scale * self.degpp,self.unit))

        return self.shift(-shift[1] * self.scale * self.degpp,
                          shift[0] * self.scale * self.degpp, useDIFMAP=useDIFMAP)
    elif mode == "core":
        core = self.get_core_component()
        return self.shift(-core.x*core.scale,-core.y*core.scale,useDIFMAP=useDIFMAP)
    else:
        raise Exception("Please pick valid 'mode' parameter ('stokes_i','lin_pol','core').")

change_component_ids(old_ids, new_ids)

Function to assign new component numbers

Parameters:
  • old_ids (int or list[int]) –

    Old component IDs

  • new_ids (int or list[int]) –

    New component IDs

Source code in vcat/image_data.py
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
def change_component_ids(self,old_ids,new_ids):
    """
    Function to assign new component numbers

    Args:
        old_ids (int or list[int]): Old component IDs
        new_ids (int or list[int]): New component IDs
    """

    #handle single value input
    if isinstance(old_ids,int) and isinstance(new_ids,int):
        old_ids=[old_ids]
        new_ids=[new_ids]

    old_ids=np.array(old_ids)
    new_ids=np.array(new_ids)

    if len(np.unique(old_ids)) != len(old_ids) or len(np.unique(new_ids)) != len(new_ids):
        raise Exception("Component number specified more than one time in old_ids or new_ids!")

    #set new component ids
    for ind,comp in enumerate(self.components):
        if comp.component_number in old_ids:
            i=int(np.where(np.array(old_ids)==comp.component_number)[0][0])
            self.components[ind].component_number=new_ids[i]
        else:
            if comp.component_number in new_ids:
                #in that case we will reset the component id to avoid duplication
                self.components[ind].component_number=-1

copy()

Create copy of the current ImageData object

Returns:
Source code in vcat/image_data.py
802
803
804
805
806
807
808
809
def copy(self):
    """
    Create copy of the current ImageData object

    Returns:
        image (ImageData): Copied image
    """
    return copy.copy(self)

export(outputfile, polarization='I')

Function to export fits file

Parameters:
  • outputfile (str) –

    Name/path of the intended output file

  • polarization (str, default: 'I' ) –

    Polarization to export ('I','Q','U')

Source code in vcat/image_data.py
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
def export(self,outputfile,polarization="I"):
    """
    Function to export fits file

    Args:
        outputfile (str): Name/path of the intended output file
        polarization (str): Polarization to export ('I','Q','U')
    """
    if polarization=="I":
        os.system(f"cp {self.file_path} {outputfile}")
        logger.info(f"Stokes {polarization} succesfully exported to {outputfile}.")
    elif polarization=="Q":
        if self.stokes_q_path=="":
            logger.info(f"Stokes {polarization} succesfully exported to {outputfile}.")
        else:
            os.system(f"cp {self.stokes_q_path} {outputfile}")
            logger.info(f"Stokes {polarization} succesfully exported to {outputfile}.")
    elif polarization=="U":
        if self.stokes_u_path=="":
            logger.info(f"Stokes {polarization} succesfully exported to {outputfile}.")
        else:
            os.system(f"cp {self.stokes_u_path} {outputfile}")
            logger.info(f"Stokes {polarization} succesfully exported to {outputfile}.")

fit_collimation_profile(method='model', jet='Jet', fit_type='brokenPowerlaw', x0=False, s=100, plot_data=True, plot_fit=True, fit_r0=True, shift_r=0, plot='', show=False, label='', color=plot_colors[0], marker=plot_markers[0])

Function to fit a collimation profile to the jet/counterjet

Parameters:
  • method (str, default: 'model' ) –

    Method to use for collimation profile ('model' to use model components, 'ridgeline' to use ridgeline fit)

  • jet (str, default: 'Jet' ) –

    Choose whether to do Jet ('Jet'), Counterjet ('Cjet') or both ('Twin')

  • fit_type (str, default: 'brokenPowerlaw' ) –

    Choose fit_type to use ('brokenPowerlaw' or 'Powerlaw')

  • x0_bpl (list[float]) –

    Start values for fit

  • plot_data (bool, default: True ) –

    Choose whether to plot the fitted data

  • plot_fit (bool, default: True ) –

    Choose whether to plot the fit

  • fit_r0 (bool, default: True ) –

    Choose whether to include (r+r0) in fit or just r

  • shift_r (float, default: 0 ) –

    Shift plot by radius in mas.

  • plot (JetProfilePlot, default: '' ) –

    Pass JetProfilePlot to add plots, default will create a new one

  • show (bool, default: False ) –

    Choose whether to show the plot

  • label (str, default: '' ) –

    Label for the fitted data/fit

  • color (str, default: plot_colors[0] ) –

    Plot color

  • marker (str, default: plot_markers[0] ) –

    Plot marker

Returns:
  • plot( JetProfilePlot ) –

    Jet profile plot

Source code in vcat/image_data.py
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
def fit_collimation_profile(self,method="model",jet="Jet",fit_type='brokenPowerlaw',x0=False,s=100,
                            plot_data=True,plot_fit=True,fit_r0=True,shift_r=0,plot="",show=False,label="",color=plot_colors[0],marker=plot_markers[0]):
    """
    Function to fit a collimation profile to the jet/counterjet

    Args:
        method (str): Method to use for collimation profile ('model' to use model components, 'ridgeline' to use ridgeline fit)
        jet (str): Choose whether to do Jet ('Jet'), Counterjet ('Cjet') or both ('Twin')
        fit_type (str): Choose fit_type to use ('brokenPowerlaw' or 'Powerlaw')
        x0_bpl (list[float]): Start values for fit
        plot_data (bool): Choose whether to plot the fitted data
        plot_fit (bool): Choose whether to plot the fit
        fit_r0 (bool): Choose whether to include (r+r0) in fit or just r
        shift_r (float): Shift plot by radius in mas.
        plot (JetProfilePlot): Pass JetProfilePlot to add plots, default will create a new one
        show (bool): Choose whether to show the plot
        label (str): Label for the fitted data/fit
        color (str): Plot color
        marker (str): Plot marker

    Returns:
        plot (JetProfilePlot): Jet profile plot

    """

    fit_fail_jet=False
    fit_fail_counterjet=False

    if method=="model":
        #TODO make it work also for counterjet
        #jet info
        dists=[]
        widths=[]
        width_errs=[]

        #counter jet info
        cdists = []
        cwidths = []
        cwidth_errs = []

        for comp in self.components:
            #if component Jet
            dists.append(comp.distance_to_core*self.scale)
            widths.append(comp.maj*self.scale)
            width_errs.append(comp.maj_err*self.scale)
            #else component counterjet
                #cdists.append(comp.distance_to_core * self.scale)
                #cwidths.append(comp.maj * self.scale)
                #cwidth_errs.append(comp.maj_err * self.scale)

    elif method=="ridgeline":

        #jet info
        dists=self.ridgeline.dist
        widths=self.ridgeline.width
        width_errs=self.ridgeline.width_err

        #counterjet info
        cdists = self.counter_ridgeline.dist
        cwidths = self.counter_ridgeline.width
        cwidth_errs = self.counter_ridgeline.width_err

    else:
        raise Exception("Please specify valid 'method' for fit_collimation_profile ('model', 'ridgeline').")

    if jet=="Jet" or jet=="Twin":
        try:
            beta, sd_beta, chi2, out = fit_width(dists, widths, width_err=width_errs, dist_err=False,s=s,
                                                 fit_type=fit_type,x0=x0,fit_r0=fit_r0)
        except:
            logger.warning("Collimation fit did not work for jet!")
            fit_fail_jet=True

    if jet=="CJet" or jet=="Twin":
        try:
            cbeta, csd_beta, cchi2, cout = fit_width(cdists, cwidths, width_err=cwidth_errs, dist_err=False,s=s,
                                                 fit_type=fit_type,x0=x0,fit_r0=fit_r0)
        except:
            logger.warning("Collimation fit did not work for counter jet!")
            fit_fail_counterjet=True

    if plot=="":
        plot=JetProfilePlot(jet=jet,redshift=self.redshift,shift_r=shift_r)
    else:
        try:
            if plot.jet != jet:
                raise Exception("Plot has wrong 'jet' type.")
        except:
            raise Exception("Plot is not a valid 'JetProfilePlot'.")

    if plot_data:
        if jet=="Jet":
            plot.plot_profile(dists,widths,width_errs,color,marker,label=label)
        elif jet=="CJet":
            plot.plot_profile(cdists,cwidths,cwidth_errs,color,marker,label=label)
        else:
            plot.plot_profile([dists,cdists],[widths,cwidths],[width_errs,cwidth_errs],color,marker,label=label)

    x=np.linspace(min(dists),max(dists),1000)
    if plot_fit:
        if jet=="Jet" or jet=="Twin":
            if not fit_fail_jet:
                plot.plot_fit(x, fit_type, beta, sd_beta, chi2, "Jet", color, label=label,fit_r0=fit_r0,s=s)
        if jet=="CJet" or jet=="Twin":
            if not fit_fail_counterjet:
                plot.plot_fit(x, fit_type, cbeta, csd_beta, cchi2, "CJet", color, label=label,fit_r0=fit_r0,s=s)


    if show:
        plot.plot_legend()
        plt.show()

    return plot

fit_comp_polarization()

Function to fit polarization to existing Stokes I model components. Will use DIFMAP to fit a Stokes Q and Stokes Q amplitude to the Stokes I components.

Source code in vcat/image_data.py
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
def fit_comp_polarization(self):
    """
    Function to fit polarization to existing Stokes I model components. Will use DIFMAP to fit a Stokes Q and
    Stokes Q amplitude to the Stokes I components.
    """


    write_mod_file_from_components(self.components,channel="i",export="tmp/model_q.mod",adv=[True])
    os.system("cp tmp/model_q.mod tmp/model_u.mod")
    comps_q=copy.deepcopy(self.components)
    comps_u=copy.deepcopy(self.components)
    comps_q=modelfit_difmap(self.uvf_file,"tmp/model_q.mod",50,difmap_path,components=comps_q,
                            weighting=self.uvw,channel="q",do_selfcal=True,selfcal_model=self.stokes_i_mod_file)
    comps_u=modelfit_difmap(self.uvf_file,"tmp/model_u.mod",50,difmap_path,components=comps_u,
                            weighting=self.uvw,channel="u",do_selfcal=True,selfcal_model=self.stokes_i_mod_file)

    for j,comp in enumerate(self.components):
        for i in range(len(comps_q)):
            #we need to check the component association (just to be sure)
            if abs(comps_q[i].x-comp.x)<1e-4/comp.scale and abs(comps_q[i].y-comp.y)<1e-4/comp.scale and abs(comps_q[i].maj-comp.maj)<1e-4/comp.scale:
                #calculate lin_pol and EVPA from Q and U flux
                lin_pol=np.sqrt(comps_q[i].flux**2+comps_u[i].flux**2)
                evpa=0.5*np.arctan2(comps_u[i].flux,comps_q[i].flux)/np.pi*180
                #set lin_pol and evpa of component
                self.components[j].lin_pol = lin_pol
                self.components[j].evpa = evpa

                #get component error in lin pol and evpa
                if self.fit_comp_pol_errors:
                    #first get q_flux_err
                    S_p, rms = get_comp_peak_rms(comp.x * comp.scale, comp.y * comp.scale,
                                                self.fits_file, self.uvf_file, "tmp/model_q.mod",
                                                self.stokes_i_mod_file,channel="q",
                                                weighting=self.uvw, difmap_path=self.difmap_path)

                    comp_snr_q = S_p / rms

                    if S_p == 0:
                        S_p = 0.00001
                    sigma_p = rms * np.sqrt(1 + comp_snr_q)

                    sigma_t = sigma_p * np.sqrt(1 + (comps_q[i].flux ** 2 / S_p ** 2))
                    q_flux_err = np.sqrt(sigma_t ** 2 + (self.gain_err * comps_q[i].flux) ** 2)

                    # get component error in lin pol and evpa
                    #second get u_flux_err
                    S_p, rms = get_comp_peak_rms(comp.x * comp.scale, comp.y * comp.scale,
                                                 self.fits_file, self.uvf_file, "tmp/model_u.mod",
                                                 self.stokes_i_mod_file, channel="u",
                                                 weighting=self.uvw, difmap_path=self.difmap_path)
                    comp_snr_u = S_p / rms

                    if S_p == 0:
                        S_p = 0.00001
                    sigma_p = rms * np.sqrt(1 + comp_snr_u)

                    sigma_t = sigma_p * np.sqrt(1 + (comps_u[i].flux ** 2 / S_p ** 2))
                    u_flux_err = np.sqrt(sigma_t ** 2 + (self.gain_err * comps_u[i].flux) ** 2)

                    #calculate EVPA and lin_pol error for component:
                    self.components[j].lin_pol_err=abs(np.sqrt(comps_q[i].flux**2*q_flux_err**2+comps_u[i].flux**2*u_flux_err**2)/comp.lin_pol)
                    self.components[j].evpa_err=abs(np.sqrt(comps_q[i].flux**2*u_flux_err**2+comps_u[i].flux**2*q_flux_err**2)/(2*comp.lin_pol**2)/np.pi*180)

get_component(id)

Function to get a specific Component.

Parameters:
  • id (int) –

    ID of the component

Returns:
  • Component

Source code in vcat/image_data.py
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
def get_component(self,id):
    """
    Function to get a specific Component.

    Args:
        id (int): ID of the component

    Returns:
        Component
    """
    for comp in self.components:
        if comp.component_number==id:
            return comp

    raise Exception(f"Component with ID {id} not found.")

get_core_component()

Function to retrieve the core component.

Returns:
  • comp( Component ) –

    Core Component

Source code in vcat/image_data.py
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
def get_core_component(self):
    """
    Function to retrieve the core component.

    Returns:
        comp (Component): Core Component
    """
    for comp in self.components:
        if comp.is_core:
            return comp

    raise Exception(f"No core component defined.")

get_model_info()

Helper method to get the current state of the model

Returns:
  • comps( list ) –

    List of Component IDs and the Core Component ID

Source code in vcat/image_data.py
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
def get_model_info(self):
    """
    Helper method to get the current state of the model

    Returns:
        comps (list): List of Component IDs and the Core Component ID
    """
    comp_ids=[]
    core_comp_id=0
    if self.components!=[]:
        for comp in self.components:
            comp_ids.append(comp.component_number)
            if comp.is_core:
                core_comp_id=comp.component_number

    return comp_ids, core_comp_id

get_noise_from_shift(shift_factor=20)

Function to calculate the image noise by shifting the phase center with DIFMAP

Parameters:
  • shift_factor (float, default: 20 ) –

    Factor of how far times the image size to shift the phase center away.

Returns:
  • noise( float ) –

    Noise value in Jy

Source code in vcat/image_data.py
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
def get_noise_from_shift(self,shift_factor=20):
    """
    Function to calculate the image noise by shifting the phase center with DIFMAP

    Args:
        shift_factor (float): Factor of how far times the image size to shift the phase center away.

    Returns:
        noise (float): Noise value in Jy
    """

    if self.uvf_file == "":
        logger.warning("Shift not possible, no .uvf file attached to ImageData!")
        return self.noise

    size_x=len(self.X)*self.degpp*self.scale
    size_y=len(self.Y)*self.degpp*self.scale

    #shift data away to get rms
    shifted_image=self.shift(size_x*shift_factor,size_y*shift_factor)

    noise=np.std(shifted_image.Z)

    return noise

get_peak_distance()

Function to calculate the Distance between Stokes I and Linear Polarization Peak

Returns:
  • [x_dist,y_dist]: Vector difference between Stokes I and Lin-Pol peak (in mas)

Source code in vcat/image_data.py
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
def get_peak_distance(self):
    """
    Function to calculate the Distance between Stokes I and Linear Polarization Peak

    Returns:
        [x_dist,y_dist]: Vector difference between Stokes I and Lin-Pol peak (in mas)
    """
    #returns distance between stokes I and lin pol peak

    #find maximum indices for stokes I and lin_pol
    y_i, x_i = np.unravel_index(np.argmax(self.Z), self.Z.shape)
    y_pol, x_pol = np.unravel_index(np.argmax(self.lin_pol),self.lin_pol.shape)

    x_dist=self.X[x_pol]-self.X[x_i]
    y_dist=self.Y[y_pol]-self.Y[y_i]

    return [x_dist, y_dist]

get_pixel_value(x, y, image='stokes_i')

Get value of a specific pixel from an image

Parameters:
  • x (float) –

    X position in mas

  • y (float) –

    Y position in mas

  • image (str, default: 'stokes_i' ) –

    Select Image to get value from ('stokes_i','stokes_q',"stokes_u","lin_pol","evpa")

Returns:

Source code in vcat/image_data.py
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
def get_pixel_value(self,x,y,image="stokes_i"):
    """
    Get value of a specific pixel from an image

    Args:
        x (float): X position in mas
        y (float): Y position in mas
        image (str): Select Image to get value from ('stokes_i','stokes_q',"stokes_u","lin_pol","evpa")

    Returns:

    """
    Xind=closest_index(self.X,x)
    Yind=closest_index(self.Y,y)

    if image=="stokes_i":
        return self.Z[Yind,Xind]
    elif image=="stokes_q":
        return self.stokes_q[Yind,Xind]
    elif image=="stokes_q":
        return self.stokes_q[Yind,Xind]
    elif image=="stokes_u":
        return self.stokes_u[Yind,Xind]
    elif image=="lin_pol":
        return self.lin_pol[Yind,Xind]
    elif image=="evpa":
        return self.evpa[Yind,Xind]

get_profile(point1, point2, show=True, image='stokes_i')

Function to obtain a line profile of the image.

Parameters:
  • point1 (list[float]) –

    Starting Point of the profile [x1,y1] (in mas)

  • point2 (list[float]) –

    End Point of the profile [x2,y2] (in mas)

  • show (bool, default: True ) –

    Choose whether to display a plot of the profile

  • image (bool, default: 'stokes_i' ) –

    Choose map to use ('stokes_i','lin_pol','evpa','spix','rm')

Returns:
  • x_values, intensity_profile: Array of the Distance from point1 to point2 and the profile

Source code in vcat/image_data.py
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
def get_profile(self,point1,point2,show=True,image="stokes_i"):
    """
    Function to obtain a line profile of the image.

    Args:
        point1 (list[float]): Starting Point of the profile [x1,y1] (in mas)
        point2 (list[float]): End Point of the profile [x2,y2] (in mas)
        show (bool): Choose whether to display a plot of the profile
        image (bool): Choose map to use ('stokes_i','lin_pol','evpa','spix','rm')

    Returns:
        x_values, intensity_profile: Array of the Distance from point1 to point2 and the profile
    """

    #get index of slice ends
    x_ind1 = closest_index(self.X,point1[0])
    y_ind1 = closest_index(self.Y,point1[1])
    x_ind2 = closest_index(self.X, point2[0])
    y_ind2 = closest_index(self.Y, point2[1])

    #select image to get slice from
    if image=="stokes_i":
        image_data=self.Z
    elif image=="lin_pol":
        image_data=self.lin_pol
    elif image=="evpa":
        image_data=self.evpa
    elif image=="spix":
        image_data=self.spix
    elif image=="rm":
        image_data=self.rm
    elif image=="frac_pol":
        image_data=self.lin_pol/self.Z
    elif image=="stokes_q":
        image_data=self.stokes_q
    elif image=="stokes_u":
        image_data=self.stokes_u
    else:
        raise Exception(f"Please specify valid 'image' parameter, image='{image}' not supported.")

    intensity_profile=profile_line(image_data, (y_ind1,x_ind1), (y_ind2,x_ind2))

    #calculate distance between points
    dist=np.sqrt((point2[0] - point1[0]) ** 2 + (point2[1] - point1[1]) ** 2)
    #get x_values of intensity_profile
    x_values=np.linspace(0,dist,len(intensity_profile))

    if show:
        plt.plot(x_values,intensity_profile)
        plt.xlabel(f"Distance from Point 1 [{self.unit}]")
        plt.ylabel("Flux Density [Jy/beam]")
        plt.tight_layout()
        plt.show()

    return x_values, intensity_profile

get_ridgeline(method='slices', angle_for_slices=0, auto_rotate=True, jet_angle='', cut_radial=5.0, cut_final=10.0, counterjet=False, width=40, j_len='', start_radius=0, end_radius=0, chi_sq_val=100.0, err_FWHM=0.1)

Function to calculate the Ridgeline (and Counter-Ridgeline) of an image.

Parameters:
  • method (str, default: 'slices' ) –

    Select method to use ('slices', 'polar')

  • angle_for_slices (float, default: 0 ) –

    Choose angle for the slices method

  • auto_rotate (bool, default: True ) –

    For the 'slices' method, choose whether to automatically detect the jet direction

  • jet_angle (float, default: '' ) –

    If auto_rotate=False, provide the jet_angle in degrees for the 'slices' method

  • cut_radial (float, default: 5.0 ) –

    radial SNR Cut for the 'slices' method

  • cut_final (float, default: 10.0 ) –

    final SNR cut for the 'slices' method

  • counterjet (bool, default: False ) –

    Choose whether to also fit a counterjet

  • width (int, default: 40 ) –

    Jet width in to consider for 'slices' method (in pixel)

  • j_len (int, default: '' ) –

    Jet length to consider for 'slices' method (in pixel)

  • start_radius (float, default: 0 ) –

    Start radius for polar method (in mas)

  • chi_sq_val (float, default: 100.0 ) –

    Chi-squared cut for fits.

  • err_FWHM (float, default: 0.1 ) –

    Relative error of the FWHM to consider for fits

Returns:
  • ridgelines( list ) –

    Ridgeline and Counter-Ridgeline objects

Source code in vcat/image_data.py
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
def get_ridgeline(self,method="slices",angle_for_slices=0,auto_rotate=True,jet_angle="",
                  cut_radial=5.0, cut_final=10.0,counterjet=False,width=40,j_len="",start_radius=0,end_radius=0,chi_sq_val=100.0,err_FWHM=0.1):

    """
    Function to calculate the Ridgeline (and Counter-Ridgeline) of an image.

    Args:
        method (str): Select method to use ('slices', 'polar')
        angle_for_slices (float): Choose angle for the slices method
        auto_rotate (bool): For the 'slices' method, choose whether to automatically detect the jet direction
        jet_angle (float): If auto_rotate=False, provide the jet_angle in degrees for the 'slices' method
        cut_radial (float): radial SNR Cut for the 'slices' method
        cut_final (float): final SNR cut for the 'slices' method
        counterjet (bool): Choose whether to also fit a counterjet
        width (int): Jet width in to consider for 'slices' method (in pixel)
        j_len (int): Jet length to consider for 'slices' method (in pixel)
        start_radius (float): Start radius for polar method (in mas)
        chi_sq_val (float): Chi-squared cut for fits.
        err_FWHM (float): Relative error of the FWHM to consider for fits

    Returns:
        ridgelines (list): Ridgeline and Counter-Ridgeline objects
    """

    if method=="slices":
        #this is Lucas method with an additional option to auto_rotate.
        image=self.copy()

        if auto_rotate:
            #convert image to polar coordinates
            R, Theta, Z_polar = convert_image_to_polar(self.X, self.Y, self.Z)
            #Integrate over the radius to find jet direction:
            integrated_jet=np.zeros(len(Theta[:,0]))
            for i in range(len(R[0])):
                integrated_jet+=Z_polar[:,i]*R[:,i] #correct for rdTheta in integration
            #plt.plot(Theta[:,0],integrated_jet)
            #plt.show()
            #find maximum flux
            max_ind=np.argmax(integrated_jet)
            jet_direction=Theta[:,0][max_ind]
            logger.info(f"Automatically determined jet direction {jet_direction}°.")
            image=image.rotate(-jet_direction)
        elif jet_angle!="":
            image=image.rotate(-jet_angle)
        else:
            logger.warning("Will assume the jet was already rotated to position angle 0°.")

        # TODO need to CONVERT IT TO Jy/px????
        image_data = image.Z

        #if not j_len given, will use full image - 10 pixels at the edge
        if j_len=="":
            j_len=int(len(self.Y)/2-10)

        #get ridgeline
        ridgeline=Ridgeline().get_ridgeline_luca(image_data,self.noise,self.error,self.degpp*self.scale,[self.beam_maj,self.beam_min,self.beam_pa],
                                                 self.X,self.Y,angle_for_slices=angle_for_slices,cut_radial=cut_radial,
                                                 cut_final=cut_final,width=width,j_len=j_len,chi_sq_val=chi_sq_val,err_FWHM=err_FWHM)
        image.ridgeline=ridgeline

        if counterjet:
            counter_ridgeline=Ridgeline().get_ridgeline_luca(image_data,self.noise,self.error,self.degpp*self.scale,[self.beam_maj,self.beam_min,self.beam_pa],
                                                 self.X,self.Y,counterjet=True,angle_for_slices=angle_for_slices,cut_radial=cut_radial,
                                                 cut_final=cut_final,width=width,j_len=j_len,chi_sq_val=chi_sq_val,err_FWHM=err_FWHM)

            image.counter_ridgeline=counter_ridgeline

        if auto_rotate:
            # rotate image back
            image.rotate(jet_direction)
        elif jet_angle!="":
            image = image.rotate(jet_angle)
        # set new ridgeline
        self.ridgeline = image.ridgeline
        self.counter_ridgeline = image.counter_ridgeline

        return self.ridgeline, self.counter_ridgeline

    elif method=="polar":
        #convert image to polar coordinates
        image = self.copy()

        if auto_rotate:
            # convert image to polar coordinates
            R, Theta, Z_polar = convert_image_to_polar(self.X, self.Y, self.Z)
            # Integrate over the radius to find jet direction:
            integrated_jet = np.zeros(len(Theta[:, 0]))
            for i in range(len(R[0])):
                integrated_jet += Z_polar[:, i] * R[:, i]  # correct for rdTheta in integration
            # plt.plot(Theta[:,0],integrated_jet)
            # plt.show()
            # find maximum flux
            max_ind = np.argmax(integrated_jet)
            jet_direction = Theta[:, 0][max_ind]
            logger.info(f"Automatically determined jet direction {jet_direction}°.")
            image = image.rotate(-jet_direction)
        elif jet_angle != "":
            image = image.rotate(-jet_angle)
        else:
            logger.warning("Will assume the jet was already rotated to position angle 0°.")

        R, Theta, Z_polar = convert_image_to_polar(image.X, image.Y, image.Z)

        ridgeline=Ridgeline().get_ridgeline_polar(R,Theta,Z_polar,self,[self.beam_maj,self.beam_min,self.beam_pa],self.error,
                                                  start_radius=start_radius,end_radius=end_radius)

        image.ridgeline=ridgeline

        if auto_rotate:
            # rotate image back
            image.rotate(jet_direction)
        elif jet_angle != "":
            image = image.rotate(jet_angle)
        # set new ridgeline
        self.ridgeline = image.ridgeline

        return self.ridgeline, self.counter_ridgeline

    elif method=="polar_gauss":
        #convert image to polar coordinates
        R, Theta, Z_polar = convert_image_to_polar(self.X, self.Y, self.Z)

        ridgeline=Ridgeline().get_ridgeline_polar(R,Theta,Z_polar,[self.beam_maj,self.beam_min,self.beam_pa],self.error,
                                                  start_radius=start_radius)

        self.ridgeline=ridgeline

        return self.ridgeline, self.counter_ridgeline
    else:
        raise Exception("Please select valid ridgeline method ('polar', 'slices').")

jet_to_counterjet_profile(savefig='', show=True)

Function to plot the jet-to-counterjet ratio

Parameters:
  • savefig (str, default: '' ) –

    File path to store the plot

  • show (bool, default: True ) –

    Choose whether to display the plot

Source code in vcat/image_data.py
2191
2192
2193
2194
2195
2196
2197
2198
2199
def jet_to_counterjet_profile(self,savefig="",show=True):
    """
    Function to plot the jet-to-counterjet ratio

    Args:
        savefig (str): File path to store the plot
        show (bool): Choose whether to display the plot
    """
    self.ridgeline.jet_to_counterjet_profile(self.counter_ridgeline,savefig=savefig,show=show)

masking(mask_type='ellipse', args=False, invert_mask=False)

Function to mask ImageData object.

Parameters:
  • mask_type

    'npix_x','cut_left','cut_right','radius','ellipse','flux_cut'

  • args

    the arguments for the mask 'npix_x': args=[npix_x,npixy] 'cut_left': args = cut_left 'cut_right': args = cut_right 'radius': args = radius 'ellipse': args = {'e_args': [e_maj,e_min,e_pa], 'e_xoffset': xoff, 'e_yoffset': yoff} all in the image intrinsic unit 'flux_cut: args = flux cut Flags everything above flux_cut times peak brightness

Source code in vcat/image_data.py
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
def masking(self, mask_type='ellipse', args=False, invert_mask=False):
    '''
    Function to mask ImageData object.

    Args:
        mask_type: 'npix_x','cut_left','cut_right','radius','ellipse','flux_cut'
        args: the arguments for the mask
            'npix_x': args=[npix_x,npixy]
            'cut_left': args = cut_left
            'cut_right': args = cut_right
            'radius': args = radius
            'ellipse': args = {'e_args': [e_maj,e_min,e_pa], 'e_xoffset': xoff, 'e_yoffset': yoff} all in the image intrinsic unit
            'flux_cut: args = flux cut
                Flags everything above flux_cut times peak brightness

    '''
    # cut out inner, optically thick part of the image
    if mask_type == 'npix_x':
        npix_x = args[0]
        npix_y = args[1]
        px_min_x = int(len(self.X) / 2 - npix_x/2)
        px_max_x = int(len(self.X) / 2 + npix_x/2)
        px_min_y = int(len(self.Y) / 2 - npix_y/2)
        px_max_y = int(len(self.Y) / 2 + npix_y/2)

        px_range_x = np.arange(px_min_x, px_max_x + 1, 1)
        px_range_y = np.arange(px_min_y, px_max_y + 1, 1)

        index = np.meshgrid(px_range_y, px_range_x)
        self.mask[tuple(index)] = True

    if mask_type == 'cut_left':
        cut_left = args
        px_max = int(len(self.X) / 2. + cut_left)
        px_range_x = np.arange(0, px_max, 1)
        self.mask[:, px_range_x] = True

    if mask_type == 'cut_right':
        cut_right = args
        px_max = int(len(self.X) / 2 - cut_right)
        px_range_x = np.arange(px_max, len(self.X), 1)
        self.mask[:, px_range_x] = True

    if mask_type == 'radius':
        radius = args
        rr, cc = disk((int(len(self.X) / 2), int(len(self.Y) / 2)), radius)
        self.mask[rr, cc] = True

    if mask_type == 'ellipse':
        e_maj = int(args['e_args'][0]/self.scale/self.degpp)/2
        e_min = int(args['e_args'][1]/self.scale/self.degpp)/2
        e_pa = args['e_args'][2]
        e_xoffset = -int(args['e_xoffset']/self.scale/self.degpp)
        e_yoffset = int(args['e_yoffset']/self.scale/self.degpp)

        try:
            x, y = int(len(self.X) / 2) + e_xoffset, int(len(self.Y) / 2) + e_yoffset
        except:
            try:
                x, y = int(len(self.X) / 2) + e_xoffset, int(len(self.Y) / 2)
            except:
                try:
                    x, y = int(len(self.X) / 2) , int(len(self.Y) / 2) + e_yoffset
                except:
                    x, y = int(len(self.X) / 2) , int(len(self.Y) / 2)

        if e_pa == False:
            e_pa = 0
        else:
            e_pa = e_pa
        rr, cc = ellipse(y, x, e_maj, e_min, rotation=-e_pa * np.pi / 180)
        self.mask[rr, cc] = True

    if mask_type == 'flux_cut':
        flux_cut = args
        # mask everything above flux_cut times the peak brightness
        self.mask[self.Z>flux_cut*np.max(self.Z)] = True

    if mask_type == 'reset':
        self.mask=np.zeros_like(self.Z)

    if invert_mask==True:
        self.mask=np.invert(self.mask)

plot_uv(fig='', ax='', savefig='', show=True)

Function to plot the uv-coverage, if a .uvf-file is provided.

Parameters:
  • fig (Matplotlib Figure, default: '' ) –

    Optional input of matplotlib fig

  • ax (Matplotlib Ax, default: '' ) –

    Optional input of matplotlib ax

  • savefig (string, default: '' ) –

    Path to export the plot

  • show (bool, default: True ) –

    Choose whether to show the plot or not

Returns:
  • fig, ax

Source code in vcat/image_data.py
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
def plot_uv(self,fig="",ax="",savefig="",show=True):
    """
    Function to plot the uv-coverage, if a .uvf-file is provided.

    Args:
        fig (Matplotlib Figure): Optional input of matplotlib fig
        ax (Matplotlib Ax): Optional input of matplotlib ax
        savefig (string): Path to export the plot
        show (bool): Choose whether to show the plot or not

    Returns:
        fig, ax
    """

    if fig=="" or ax=="":
        fig, ax = plt.subplots(1,1,figsize=(6,6))

    if self.uvf_file!="":
        hdu = fits.open(self.uvf_file)
        u_array = []
        v_array = []

        for scan in hdu[0].data:
            u_array.append(scan[0])
            v_array.append(scan[1])

        for i in range(10):
            try:
                if "FREQ" in hdu[0].header["CTYPE" + str(i)]:
                    freq_ghz = float(hdu[0].header["CRVAL" + str(i)]) / 1e9  # Frequency in GHz
            except:
                pass
        # plot it
        ax.scatter(freq_ghz * 10 ** 3 * np.array(u_array), freq_ghz * 10 ** 3 * np.array(v_array), s=0.5,
                    color="tab:blue")
        ax.scatter(-freq_ghz * 10 ** 3 * np.array(u_array), -freq_ghz * 10 ** 3 * np.array(v_array), s=0.5,
                    color="tab:blue")
        ax.invert_xaxis()
        ax.set_xlabel("U (10⁶ $\lambda$)")
        ax.set_ylabel("V (10⁶ $\lambda$)")

        ax.set_aspect("equal")

        if savefig!="":
            fig.savefig(savefig,bbox_inches="tight")

        if show:
            plt.show()

    return fig, ax

regrid(npix='', pixel_size='', useDIFMAP=True, mask_outside=False)

This method regrids the image in full polarization

Parameters:
  • npix (int, default: '' ) –

    Number of pixels in ONE direction

  • pixel_size (float, default: '' ) –

    Size of pixel in image scale units (usually mas)

  • useDIFMAP (bool, default: True ) –

    Choose whether to regrid using DIFMAP or not

  • mask_outside (bool, default: False ) –

    Choose whether new image ares created through regridding will be masked automatically (bool)

Returns:
  • regridded ImageData object

Source code in vcat/image_data.py
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
def regrid(self,npix="",pixel_size="",useDIFMAP=True,mask_outside=False):
    """
    This method regrids the image in full polarization

    Args:
        npix (int): Number of pixels in ONE direction
        pixel_size (float): Size of pixel in image scale units (usually mas)
        useDIFMAP (bool): Choose whether to regrid using DIFMAP or not
        mask_outside (bool): Choose whether new image ares created through regridding will be masked automatically (bool)

    Returns:
        regridded ImageData object
    """
    logger.debug("Regridding Image")

    if len(self.X)==npix and len(self.Y)==npix and pixel_size==self.degpp*self.scale:
        return self

    n2 = len(self.X)
    n1 = len(self.Y)

    # Original grid (centered)
    x_old = (np.arange(n2) - (n2 - 1) / 2) * self.degpp * self.scale
    y_old = (np.arange(n1) - (n1 - 1) / 2) * self.degpp * self.scale

    # New grid (centered)
    x_new = (np.arange(npix) - (npix - 1) / 2) * pixel_size
    y_new = (np.arange(npix) - (npix - 1) / 2) * pixel_size

    # Generate new grid coordinates
    X_new, Y_new = np.meshgrid(x_new, y_new)
    points = np.array([Y_new.ravel(), X_new.ravel()]).T

    # define interpolator
    def interpolator(image,fill_value=0):
        interpolator = RegularGridInterpolator((y_old, x_old), image, method='linear', bounds_error=False,
                                               fill_value=fill_value)
        return interpolator

    # regrid mask
    if mask_outside==True:
        fill_value=1
    else:
        fill_value=0


    new_mask = interpolator(self.mask, fill_value)(points).reshape(npix, npix)  # flags new points automatically
    new_mask[new_mask < 0.5] = False
    new_mask[new_mask >= 0.5] = True

    if self.uvf_file=="" or useDIFMAP==False:
        # Interpolate values at new grid points
        new_image_i = interpolator(self.Z)(points).reshape(npix, npix)

        #try polarization
        try:
            new_image_q = interpolator(self.stokes_q)(points).reshape(npix, npix)
            new_image_u = interpolator(self.stokes_u)(points).reshape(npix, npix)
        except:
            logger.warning("Unable to regrid polarization, probably no polarization loaded")


        # write outputs to the fits files
        if self.only_stokes_i:
            # this means DIFMAP style fits image
            with fits.open(self.fits_file) as f:
                #overwrite image data
                f[0].data = np.zeros((f[0].data.shape[0], f[0].data.shape[1], npix, npix))
                f[0].data[0, 0, :, :] = new_image_i
                new_stokes_i_fits = self.model_save_dir+"mod_files_clean/" + self.name + "_" + self.date + "_" + "{:.0f}".format(self.freq/1e9).replace(".","_") + "GHz.fits"
                try:
                    f[1].header['XTENSION'] = 'BINTABLE' #This is a bug fix that is needed for some .fits files, otherwise writeto throws an error
                except:
                    pass
                #modify header parameters to new npix and pixelsize
                f[0].header["NAXIS1"]=npix
                f[0].header["NAXIS2"]=npix
                f[0].header["CDELT1"]=-pixel_size/self.scale
                f[0].header["CDELT2"]=pixel_size/self.scale
                f[0].header["CRPIX1"]=int(f[0].header["CRPIX1"]/len(self.X)*npix)
                f[0].header["CRPIX2"]=int(f[0].header["CRPIX2"]/len(self.X)*npix)
                f.writeto(new_stokes_i_fits, overwrite=True)

            if len(self.stokes_q) > 0:
                with fits.open(self.stokes_q_path) as f:
                    # overwrite image data
                    f[0].data = np.zeros((f[0].data.shape[0], f[0].data.shape[1], npix, npix))
                    f[0].data[0, 0, :, :] = new_image_q
                    new_stokes_q_fits = self.model_save_dir+"mod_files_q/" + self.name + "_" + self.date + "_" + "{:.0f}".format(self.freq/1e9).replace(".","_") + "GHz.fits"
                    try:
                        f[1].header['XTENSION'] = 'BINTABLE'  # This is a bug fix that is needed for some .fits files, otherwise writeto throws an error
                    except:
                        pass
                    # modify header parameters to new npix and pixelsize
                    f[0].header["NAXIS1"] = npix
                    f[0].header["NAXIS2"] = npix
                    f[0].header["CDELT1"] = -pixel_size / self.scale
                    f[0].header["CDELT2"] = pixel_size / self.scale
                    f[0].header["CRPIX1"] = int(f[0].header["CRPIX1"] / len(self.X) * npix)
                    f[0].header["CRPIX2"] = int(f[0].header["CRPIX2"] / len(self.X) * npix)
                    f.writeto(new_stokes_q_fits, overwrite=True)
            else:
                new_stokes_q_fits=""


            if len(self.stokes_u) > 0:
                with fits.open(self.stokes_u_path) as f:
                    # overwrite image data
                    f[0].data = np.zeros((f[0].data.shape[0], f[0].data.shape[1], npix, npix))
                    f[0].data[0, 0, :, :] = new_image_u
                    new_stokes_u_fits = self.model_save_dir+"mod_files_u/" + self.name + "_" + self.date + "_" + "{:.0f}".format(self.freq/1e9).replace(".","_") + "GHz.fits"
                    try:
                        f[1].header['XTENSION'] = 'BINTABLE'  # This is a bug fix that is needed for some .fits files, otherwise writeto throws an error
                    except:
                        pass
                    # modify header parameters to new npix and
                    # pixelsize
                    f[0].header["NAXIS1"] = npix
                    f[0].header["NAXIS2"] = npix
                    f[0].header["CDELT1"] = -pixel_size / self.scale
                    f[0].header["CDELT2"] = pixel_size / self.scale
                    f[0].header["CRPIX1"] = int(f[0].header["CRPIX1"] / len(self.X) * npix)
                    f[0].header["CRPIX2"] = int(f[0].header["CRPIX2"] / len(self.X) * npix)
                    f.writeto(new_stokes_u_fits, overwrite=True)
            else:
                new_stokes_u_fits = ""

        else:
            # CASA style
            f = fits.open(self.fits_file)
            # overwrite image data
            f[0].data = np.zeros((f[0].data.shape[0], f[0].data.shape[1], npix, npix))
            f[0].data[0, 0, :, :] = new_image_i
            f[0].data[1, 0, :, :] = new_image_q
            f[0].data[2, 0, :, :] = new_image_u
            f[0].header["NAXIS1"] = npix
            f[0].header["NAXIS2"] = npix
            f[0].header["CDELT1"] = -pixel_size / self.scale
            f[0].header["CDELT2"] = pixel_size / self.scale
            f[0].header["CRPIX1"] = int(f[0].header["CRPIX1"] / len(self.X) * npix)
            f[0].header["CRPIX2"] = int(f[0].header["CRPIX2"] / len(self.X) * npix)
            new_stokes_i_fits = self.model_save_dir+"mod_files_clean/" + self.name + "_" + self.date + "_" + "{:.0f}".format(self.freq/1e9).replace(".","_") + "GHz.fits"
            f.writeto(new_stokes_i_fits, overwrite=True, output_verify='ignore')
            new_stokes_q_fits=""
            new_stokes_u_fits=""

        #if model loaded try regridding as well
        try:
            if not self.model_file_path == self.fits_file:
                if not self.model_file_path=="":
                    with fits.open(self.model_file_path) as f:
                        new_image_model = interpolator(f[0].data[0, 0, :, :])(points).reshape(npix,npix)
                        f[0].data = np.zeros((f[0].data.shape[0], f[0].data.shape[1], npix, npix))
                        f[0].data[0, 0, :, :] = new_image_model
                        new_model_fits = self.model_save_dir + "mod_files_model/" + self.name + "_" + self.date + "_" + "{:.0f}".format(
                self.freq / 1e9).replace(".", "_") + "GHz.fits"
                        try:
                            f[1].header['XTENSION'] = 'BINTABLE'  # This is a bug fix that is needed for some .fits files, otherwise writeto throws an error
                        except:
                            pass
                        f[0].header["NAXIS1"] = npix
                        f[0].header["NAXIS2"] = npix
                        f[0].header["CDELT1"] = -pixel_size / self.scale
                        f[0].header["CDELT2"] = pixel_size / self.scale
                        f[0].header["CRPIX1"]=int(f[0].header["CRPIX1"]/len(self.X)*npix)
                        f[0].header["CRPIX2"]=int(f[0].header["CRPIX2"]/len(self.X)*npix)
                        f.writeto(new_model_fits, overwrite=True)
                else:
                    new_model_fits=""
            else:
                new_model_fits=new_stokes_i_fits
        except:
            logger.warning("Model not regridded, probably no model loaded.")
            new_model_fits=""

    else:
        npix=npix*2 #DIFMAP npix convention
        #Using DIFMAP
        # restore Stokes I
        new_stokes_i_fits = self.stokes_i_mod_file.replace(".mod", "")

        fold_with_beam([self.fits_file], difmap_path=self.difmap_path,
                       bmaj=self.beam_maj, bmin=self.beam_min, posa=self.beam_pa, shift_x=0, shift_y=0,
                       channel="i", output_dir=self.model_save_dir + "mod_files_clean", outname=new_stokes_i_fits,
                       n_pixel=npix, pixel_size=pixel_size,
                       mod_files=[self.stokes_i_mod_file],clean_mod_files=[self.stokes_i_mod_file], uvf_files=[self.uvf_file],
                       weighting=self.uvw,uvtaper=self.uvtaper)

        new_stokes_i_fits += ".fits"

        # try to restore modelfit if it is there
        try:
            if not self.model_file_path == self.fits_file:
                new_model_fits = self.model_mod_file.replace(".mod", "")

                fold_with_beam([self.fits_file], difmap_path=self.difmap_path,
                               bmaj=self.beam_maj, bmin=self.beam_min, posa=self.beam_pa, shift_x=0, shift_y=0,
                               channel="i", output_dir=self.model_save_dir + "mod_files_model",
                               outname=new_model_fits,
                               n_pixel=npix, pixel_size=pixel_size,
                               mod_files=[self.model_mod_file],clean_mod_files=[self.stokes_i_mod_file], uvf_files=[self.uvf_file],
                               weighting=self.uvw,uvtaper=self.uvtaper)

                new_model_fits += ".fits"
            else:
                new_model_fits = new_stokes_i_fits
        except:
            new_model_fits = ""

        # try to restore polarization as well if it is there
        try:
            new_stokes_q_fits = self.stokes_q_mod_file.replace(".mod", "")
            new_stokes_u_fits = self.stokes_u_mod_file.replace(".mod", "")

            fold_with_beam([self.fits_file], difmap_path=self.difmap_path,
                           bmaj=self.beam_maj, bmin=self.beam_min, posa=self.beam_pa, shift_x=0, shift_y=0,
                           channel="q", output_dir=self.model_save_dir + "mod_files_q", outname=new_stokes_q_fits,
                           n_pixel=npix, pixel_size=pixel_size,
                           mod_files=[self.stokes_q_mod_file],clean_mod_files=[self.stokes_i_mod_file], uvf_files=[self.uvf_file],
                           weighting=self.uvw,uvtaper=self.uvtaper)

            new_stokes_q_fits += ".fits"

            fold_with_beam([self.fits_file], difmap_path=self.difmap_path,
                           bmaj=self.beam_maj, bmin=self.beam_min, posa=self.beam_pa, shift_x=0, shift_y=0,
                           channel="u", output_dir=self.model_save_dir + "mod_files_u", outname=new_stokes_u_fits,
                           n_pixel=npix, pixel_size=pixel_size,
                           mod_files=[self.stokes_u_mod_file], clean_mod_files=[self.stokes_i_mod_file],uvf_files=[self.uvf_file],
                           weighting=self.uvw,uvtaper=self.uvtaper)

            new_stokes_u_fits += ".fits"

        except:
            new_stokes_q_fits = ""
            new_stokes_u_fits = ""

    if not self.model_inp:
        new_model_fits = ""

    return ImageData(fits_file=new_stokes_i_fits,
                     uvf_file=self.uvf_file,
                     stokes_q=new_stokes_q_fits,
                     stokes_u=new_stokes_u_fits,
                     mask=new_mask,
                     ridgeline=self.ridgeline,
                     redshift=self.redshift,
                     counter_ridgeline=self.counter_ridgeline,
                     noise_method=self.noise_method,
                     model_save_dir=self.model_save_dir,
                     model=new_model_fits,
                     correct_rician_bias=self.correct_rician_bias,
                     comp_ids=self.get_model_info()[0],
                     core_comp_id=self.get_model_info()[1],
                     difmap_path=self.difmap_path,
                     fit_comp_polarization=self.fit_comp_pol,
                     fit_comp_pol_errors=self.fit_comp_pol_errors,
                     uvw=self.uvw,
                     uvtaper=self.uvtaper)

remove_component(id)

Function to remove a selected component from the Stokes I image

Parameters:
  • id (int) –

    Component id to remove

Source code in vcat/image_data.py
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
def remove_component(self,id):
    """
    Function to remove a selected component from the Stokes I image

    Args:
        id (int): Component id to remove
    """

    if isinstance(id,int):
        id=[id]
    elif not isinstance(id,list):
        raise Exception("Please enter valid component id (int or list[int])!")

    comps_to_remove=[]
    for i in id:
        comps_to_remove.append(self.get_component(i))

    #TODO rewrite to work without ehtim
    import ehtim as eh
    mod=eh.model.Model()

    for comp in comps_to_remove:
        mod=mod.add_gauss(F0=comp.flux,
                          FWHM_maj=comp.maj*comp.scale*eh.RADPERUAS*1e3,
                          FWHM_min=comp.min*comp.scale*eh.RADPERUAS*1e3,
                          PA=comp.pos/180*np.pi,
                          x0=comp.x/180*np.pi,
                          y0=comp.y/180*np.pi)

    im=mod.make_image((np.max(self.X)-np.min(self.X))*1e3*eh.RADPERUAS, len(self.X))
    im=im.blur_gauss([self.beam_maj/self.scale/180*np.pi,self.beam_min/self.scale/180*np.pi,self.beam_pa/180*np.pi])

    image=im.imvec.reshape((im.ydim, im.xdim))
    image=Jy2JyPerBeam(image,self.beam_maj,self.beam_min,self.degpp*self.scale)
    image=np.flip(image,axis=0)

    #subtract core from stokes I image
    self.Z=np.array(self.Z)-image

    return self

restore(bmaj=-1, bmin=-1, posa=-1, shift_x=0, shift_y=0, npix='', pixel_size='', useDIFMAP=True, mask_outside=False)

This allows you to restore the ImageData object with a custom beam either with DIFMAP or just the image itself

Parameters:
  • bmaj (float, default: -1 ) –

    Beam major axis (in mas)

  • bmin (float, default: -1 ) –

    Beam minor axis (in mas)

  • posa (float, default: -1 ) –

    Beam position angle (in deg)

  • shift_x (float, default: 0 ) –

    Shift in mas in x-direction

  • shift_y (float, default: 0 ) –

    Shift in mas in y-direction

  • npix (int, default: '' ) –

    Number of pixels in one image direction

  • pixel_size (float, default: '' ) –

    pixel size in mas

  • useDIFMAP (bool, default: True ) –

    Choose whether to use DIFMAP for the restoring or not

Returns:
  • image( ImageData ) –

    New ImageData object

Source code in vcat/image_data.py
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
def restore(self,bmaj=-1,bmin=-1,posa=-1,shift_x=0,shift_y=0,npix="",pixel_size="",useDIFMAP=True,mask_outside=False):
    """
    This allows you to restore the ImageData object with a custom beam either with DIFMAP or just the image itself

    Args:
        bmaj (float): Beam major axis (in mas)
        bmin (float): Beam minor axis (in mas)
        posa (float): Beam position angle (in deg)
        shift_x (float): Shift in mas in x-direction
        shift_y (float): Shift in mas in y-direction
        npix (int): Number of pixels in one image direction
        pixel_size (float): pixel size in mas
        useDIFMAP (bool): Choose whether to use DIFMAP for the restoring or not

    Returns:
        image (ImageData): New ImageData object
    """
    if bmaj==-1:
        bmaj=self.beam_maj
    if bmin==-1:
        bmin=self.beam_min
    if posa==-1:
        posa=self.beam_pa


    #TODO basic sanity check if uvf file is present and if polarization is there
    if self.uvf_file=="" or useDIFMAP==False:
        #this means there is no valid .uvf file or we don't want to use DIFMAP

        logger.warning("No .uvf file attached or useDIFMAP=False selected, will do simple shift of image only")

        # shift in degree
        shift_x_deg = shift_x / self.scale
        shift_y_deg = shift_y / self.scale

        # calculate shift to pixel increments:
        shift_x = -int(shift_x / self.scale / self.degpp)
        shift_y = int(shift_y / self.scale / self.degpp)

        #shift the image mask
        input_ = np.fft.fft2(self.mask)  # before it was np.fft.fftn(img)
        offset_image = fourier_shift(input_, shift=[shift_y, shift_x])
        imgalign = np.fft.ifft2(offset_image)  # again before ifftn
        new_mask = np.real(imgalign) > 0.5

        # shift image directly
        input_ = np.fft.fft2(self.Z)  # before it was np.fft.fftn(img)
        offset_image = fourier_shift(input_, shift=[shift_y, shift_x])
        imgalign = np.fft.ifft2(offset_image)  # again before ifftn
        new_image_i = imgalign.real
        if not (bmaj == -1 and bmin == -1 and posa == -1):
            #convert to jansky per pixel
            new_image_i = JyPerBeam2Jy(new_image_i,self.beam_maj,self.beam_min,self.degpp*self.scale)
            new_image_i = convolve_with_elliptical_gaussian(new_image_i, bmaj / self.scale / self.degpp/(2*np.sqrt(2*np.log(2))),
                                                         bmin / self.scale / self.degpp/(2*np.sqrt(2*np.log(2))), posa)
            #convert to jansky per (new) beam
            new_image_i = Jy2JyPerBeam(new_image_i,bmaj,bmin,self.degpp*self.scale)
        # try polarization
        try:
            input_ = np.fft.fft2(self.stokes_q)  # before it was np.fft.fftn(img)
            offset_image = fourier_shift(input_, shift=[shift_y, shift_x])
            imgalign = np.fft.ifft2(offset_image)  # again before ifftn
            new_image_q = imgalign.real
            if not (bmaj==-1 and bmin ==-1 and posa==-1):
                new_image_q = JyPerBeam2Jy(new_image_q, self.beam_maj, self.beam_min, self.degpp * self.scale)
                new_image_q = convolve_with_elliptical_gaussian(new_image_q,
                                                                bmaj/self.scale/self.degpp/(2*np.sqrt(2*np.log(2))),
                                                                bmin/self.scale/self.degpp/(2*np.sqrt(2*np.log(2))),posa)
                # convert to jansky per (new) beam
                new_image_q = Jy2JyPerBeam(new_image_q, bmaj, bmin, self.degpp * self.scale)

            input_ = np.fft.fft2(self.stokes_u)  # before it was np.fft.fftn(img)
            offset_image = fourier_shift(input_, shift=[shift_y, shift_x])
            imgalign = np.fft.ifft2(offset_image)  # again before ifftn
            new_image_u = imgalign.real
            if not (bmaj==-1 and bmin ==-1 and posa==-1):
                new_image_u = JyPerBeam2Jy(new_image_u, self.beam_maj, self.beam_min, self.degpp * self.scale)
                new_image_u= convolve_with_elliptical_gaussian(new_image_u,bmaj/self.scale/self.degpp/(2*np.sqrt(2*np.log(2))),
                                                                bmin/self.scale/self.degpp/(2*np.sqrt(2*np.log(2))),posa)
                # convert to jansky per (new) beam
                new_image_u = Jy2JyPerBeam(new_image_u, bmaj, bmin, self.degpp * self.scale)

        except:
            new_image_q = ""
            new_image_u = ""
            new_stokes_u_fits = ""
            new_stokes_q_fits = ""

        #write outputs to the fitsfiles
        if self.only_stokes_i:
            # this means DIFMAP style fits image
            with fits.open(self.fits_file) as f:
                f[0].data[0, 0, :, :] = new_image_i
                new_stokes_i_fits = self.model_save_dir+"mod_files_clean/" + self.name + "_" + self.date + "_" + "{:.0f}".format(self.freq/1e9).replace(".","_") + "GHz.fits"
                try:
                    f[1].header['XTENSION'] = 'BINTABLE'
                    #shift model/clean components
                    f[1].data["DELTAX"] += shift_x_deg
                    f[1].data["DELTAY"] += shift_y_deg
                except:
                    pass
                if not (bmaj == -1 and bmin == -1 and posa == -1):
                    #Overwrite beam parameters in header
                    f[0].header["BMAJ"] = bmaj / self.scale
                    f[0].header["BMIN"] = bmin / self.scale
                    f[0].header["BPA"] = posa
                f.writeto(new_stokes_i_fits, overwrite=True)

            if len(self.stokes_q) > 0:
                with fits.open(self.stokes_q_path) as f:
                    f[0].data[0, 0, :, :] = new_image_q
                    new_stokes_q_fits = self.model_save_dir+"mod_files_q/" + self.name + "_" + self.date + "_" + "{:.0f}".format(self.freq/1e9).replace(".","_") + "GHz.fits"
                    try:
                        f[1].header['XTENSION'] = 'BINTABLE'
                        # shift model/clean components
                        f[1].data["DELTAX"] += shift_x_deg
                        f[1].data["DELTAY"] += shift_y_deg
                    except:
                        pass
                    if not (bmaj == -1 and bmin == -1 and posa == -1):
                        # Overwrite beam parameters in header
                        f[0].header["BMAJ"] = bmaj / self.scale
                        f[0].header["BMIN"] = bmin / self.scale
                        f[0].header["BPA"] = posa
                    f.writeto(new_stokes_q_fits, overwrite=True)

            if len(self.stokes_u) > 0:
                with fits.open(self.stokes_u_path) as f:
                    f[0].data[0, 0, :, :] = new_image_u
                    new_stokes_u_fits = self.model_save_dir+"mod_files_u/" + self.name + "_" + self.date + "_" + "{:.0f}".format(self.freq/1e9).replace(".","_") + "GHz.fits"
                    try:
                        f[1].header['XTENSION'] = 'BINTABLE'
                        # shift model/clean components
                        f[1].data["DELTAX"] += shift_x_deg
                        f[1].data["DELTAY"] += shift_y_deg
                    except:
                        pass
                    if not (bmaj == -1 and bmin == -1 and posa == -1):
                        # Overwrite beam parameters in header
                        f[0].header["BMAJ"] = bmaj / self.scale
                        f[0].header["BMIN"] = bmin / self.scale
                        f[0].header["BPA"] = posa
                    f.writeto(new_stokes_u_fits, overwrite=True)


        else:
            # CASA style
            f = fits.open(self.fits_file)
            f[0].data[0, 0, :, :] = new_image_i
            f[0].data[1, 0, :, :] = new_image_q
            f[0].data[2, 0, :, :] = new_image_u
            if not (bmaj == -1 and bmin == -1 and posa == -1):
                # Overwrite beam parameters in header
                f[0].header["BMAJ"] = bmaj / self.scale
                f[0].header["BMIN"] = bmin / self.scale
                f[0].header["BPA"] = posa
            new_stokes_i_fits = self.model_save_dir+"mod_files_clean/" + self.name + "_" + self.date + "_" + "{:.0f}".format(self.freq/1e9).replace(".","_") + "GHz.fits"
            f.writeto(new_stokes_i_fits, overwrite=True, output_verify='ignore')
            f.close()

            new_stokes_q_fits=""
            new_stokes_u_fits=""

        # if model loaded try shifting model image as well
        try:
            if not self.model_file_path == self.fits_file:
                input_ = np.fft.fft2(
                    fits.open(self.model_file_path)[0].data[0, 0, :, :])  # before it was np.fft.fftn(img)
                offset_image = fourier_shift(input_, shift=[shift_y, shift_x])
                imgalign = np.fft.ifft2(offset_image)  # again before ifftn
                new_image_model = imgalign.real
                if not (bmaj == -1 and bmin == -1 and posa == -1):
                    new_image_model = JyPerBeam2Jy(new_image_model, self.beam_maj, self.beam_min,
                                                   self.degpp * self.scale)
                    new_image_model = convolve_with_elliptical_gaussian(new_image_model,
                                                                        bmaj / self.scale / self.degpp / (2*np.sqrt(2*np.log(2))),
                                                                        bmin / self.scale / self.degpp / (2*np.sqrt(2*np.log(2))),
                                                                        posa)
                    # convert to jansky per (new) beam
                    new_image_model = Jy2JyPerBeam(new_image_model, bmaj, bmin, self.degpp * self.scale)

                with fits.open(self.model_file_path) as f:
                    f[0].data[0, 0, :, :] = new_image_model
                    new_model_fits = self.model_save_dir + "mod_files_model/" + self.name + "_" + self.date + "_" + "{:.0f}".format(
                self.freq / 1e9).replace(".", "_") + "GHz.fits"
                    try:
                        f[1].header['XTENSION'] = 'BINTABLE'
                        f[1].data["DELTAX"] += shift_x_deg
                        f[1].data["DELTAY"] += shift_y_deg
                    except:
                        pass
                    if not (bmaj == -1 and bmin == -1 and posa == -1):
                        f[0].header["BMAJ"] = bmaj / self.scale
                        f[0].header["BMIN"] = bmin / self.scale
                        f[0].header["BPA"] = posa
                    f.writeto(new_model_fits, overwrite=True)
            else:
                new_model_fits = new_stokes_i_fits
        except:
            new_image_model = ""
            new_model_fits = ""

        new_uvf_file=self.uvf_file

    else:
        #This means we have a valid .uvf file and we will use DIFMAP for shifting and restoring
        # calculate shift to pixel increments:
        shift_x_pix = -int(shift_x / self.scale / self.degpp)
        shift_y_pix = int(shift_y / self.scale / self.degpp)

        #first let's shift the mask
        # shift the image mask
        input_ = np.fft.fft2(self.mask)  # before it was np.fft.fftn(img)
        offset_image = fourier_shift(input_, shift=[shift_y_pix, shift_x_pix])
        imgalign = np.fft.ifft2(offset_image)  # again before ifftn
        new_mask = np.real(imgalign) > 0.5

        #restore Stokes I
        new_stokes_i_fits=self.stokes_i_mod_file.replace(".mod","")

        fold_with_beam([self.fits_file],difmap_path=self.difmap_path,
                bmaj=bmaj, bmin=bmin, posa=posa,shift_x=shift_x,shift_y=shift_y,
                channel="i",output_dir=self.model_save_dir+"mod_files_clean",outname=new_stokes_i_fits,
                n_pixel=len(self.X)*2,pixel_size=self.degpp*self.scale,
                mod_files=[self.stokes_i_mod_file],clean_mod_files=[self.stokes_i_mod_file],
                uvf_files=[self.uvf_file],weighting=self.uvw,uvtaper=self.uvtaper)

        new_stokes_i_fits+=".fits"

        #try to restore modelfit if it is there
        try:
            if not self.model_file_path==self.fits_file:
                new_model_fits=self.model_mod_file.replace(".mod","")

                fold_with_beam([self.fits_file], difmap_path=self.difmap_path,
                    bmaj=bmaj, bmin=bmin, posa=posa, shift_x=shift_x, shift_y=shift_y,
                    channel="i", output_dir=self.model_save_dir + "mod_files_model", outname=new_model_fits,
                    n_pixel=len(self.X)*2,pixel_size=self.degpp*self.scale,
                    mod_files=[self.model_mod_file], clean_mod_files=[self.stokes_i_mod_file], uvf_files=[self.uvf_file],
                    weighting=self.uvw,uvtaper=self.uvtaper)

                new_model_fits+=".fits"
            else:
                new_model_fits=new_stokes_i_fits
        except:
            new_model_fits=""

        #try to restore polarization as well if it is there
        try:
            new_stokes_q_fits=self.stokes_q_mod_file.replace(".mod","")
            new_stokes_u_fits=self.stokes_u_mod_file.replace(".mod","")


            fold_with_beam([self.fits_file],difmap_path=self.difmap_path,
                bmaj=bmaj, bmin=bmin, posa=posa,shift_x=shift_x,shift_y=shift_y,
                channel="q",output_dir=self.model_save_dir+"mod_files_q",outname=new_stokes_q_fits,
                n_pixel=len(self.X)*2,pixel_size=self.degpp*self.scale,
                mod_files=[self.stokes_q_mod_file],clean_mod_files=[self.stokes_i_mod_file],
                           uvf_files=[self.uvf_file],weighting=self.uvw,uvtaper=self.uvtaper)

            new_stokes_q_fits+=".fits"

            fold_with_beam([self.fits_file],difmap_path=self.difmap_path,
                bmaj=bmaj, bmin=bmin, posa=posa, shift_x=shift_x,shift_y=shift_y,
                channel="u",output_dir=self.model_save_dir+"mod_files_u",outname=new_stokes_u_fits,
                n_pixel=len(self.X)*2,pixel_size=self.degpp*self.scale,
                mod_files=[self.stokes_u_mod_file],clean_mod_files=[self.stokes_i_mod_file],
                           uvf_files=[self.uvf_file],weighting=self.uvw,uvtaper=self.uvtaper)

            new_stokes_u_fits+=".fits"

        except:
            new_stokes_q_fits=""
            new_stokes_u_fits=""

        new_uvf_file=new_stokes_i_fits.replace(".fits",".uvf")

    if not self.model_inp:
        new_model_fits = ""

    return ImageData(fits_file=new_stokes_i_fits,
                     uvf_file=new_uvf_file,
                     stokes_q=new_stokes_q_fits,
                     stokes_u=new_stokes_u_fits,
                     mask=new_mask,
                     ridgeline=self.ridgeline,
                     redshift=self.redshift,
                     counter_ridgeline=self.counter_ridgeline,
                     noise_method=self.noise_method,
                     model_save_dir=self.model_save_dir,
                     model=new_model_fits,
                     correct_rician_bias=self.correct_rician_bias,
                     comp_ids=self.get_model_info()[0],
                     core_comp_id=self.get_model_info()[1],
                     difmap_path=self.difmap_path,
                     fit_comp_polarization=self.fit_comp_pol,
                     fit_comp_pol_errors=self.fit_comp_pol_errors,
                     uvw=self.uvw,
                     uvtaper=self.uvtaper)

rotate(angle, useDIFMAP=True, reshape=False, order=1)

Function to rotate ImageData Object (note: EVPAs are currently not rotated!)

Parameters:
  • angle (float) –

    Rotation angle in degrees (North through East)

  • useDIFMAP (bool, default: True ) –

    Choose whether to use DIFMAP or not

  • reshape (bool, default: False ) –

    If useDIFMAP=False, choose whether to reshape the image size to avoid empty areas.

  • order (int, default: 1 ) –

    Order parameter for scipy.ndimage.rotate function

Returns:
  • image( ImageData ) –

    rotated ImageData object

Source code in vcat/image_data.py
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
def rotate(self,angle,useDIFMAP=True,reshape=False,order=1):
    """
    Function to rotate ImageData Object (note: EVPAs are currently not rotated!)

    Args:
        angle (float): Rotation angle in degrees (North through East)
        useDIFMAP (bool): Choose whether to use DIFMAP or not
        reshape (bool): If useDIFMAP=False, choose whether to reshape the image size to avoid empty areas.
        order (int): Order parameter for scipy.ndimage.rotate function

    Returns:
        image (ImageData): rotated ImageData object
    """

    #rotate mask
    new_mask=scipy.ndimage.rotate(self.mask,-angle,reshape=reshape,order=0)
    #make sure values are valid
    new_mask[new_mask < 0.1] = False
    new_mask[new_mask >= 0.1] = True

    #rotate uvf file
    if self.uvf_file!="":
        new_uvf = self.model_save_dir + "mod_files_clean/" + self.name + "_" + self.date + "_" + "{:.0f}".format(
            self.freq / 1e9).replace(".", "_") + "GHz.uvf"

        rotate_uvf_file(self.uvf_file, -angle, new_uvf)

    #rotate ridgeline
    x_new,y_new=rotate_points(np.array(self.ridgeline.X_ridg), np.array(self.ridgeline.Y_ridg), -angle)
    self.ridgeline.X_ridg=x_new
    self.ridgeline.Y_ridg=y_new

    #rotate counterridgeline
    x_new, y_new = rotate_points(np.array(self.counter_ridgeline.X_ridg), np.array(self.counter_ridgeline.Y_ridg), -angle)
    self.counter_ridgeline.X_ridg = x_new
    self.counter_ridgeline.Y_ridg = y_new

    #do actual image rotations
    if self.uvf_file=="" or not useDIFMAP:
        logger.warning("No .uvf file attached or useDIFMAP=False selected, will do simple shift of image only")

        new_image_i=scipy.ndimage.rotate(self.Z,-angle,reshape=reshape,order=order)

        try:
            new_image_q = scipy.ndimage.rotate(self.stokes_q,-angle,reshape=reshape,order=order)
            new_image_u = scipy.ndimage.rotate(self.stokes_u,-angle,reshape=reshape,order=order)
        except:
            logger.warning("Unable to rotate polarization, probably no polarization loaded")

        # write outputs to the fits files
        if self.only_stokes_i:
            # this means DIFMAP style fits image
            with fits.open(self.fits_file) as f:
                # overwrite image data
                f[0].data[0, 0, :, :] = new_image_i
                new_stokes_i_fits = self.model_save_dir + "mod_files_clean/" + self.name + "_" + self.date + "_" + "{:.0f}".format(
                    self.freq / 1e9).replace(".", "_") + "GHz.fits"
                try:
                    f[1].header['XTENSION'] = 'BINTABLE'
                    new_x,new_y=rotate_points(f[1].data["DELTAX"],f[1].data["DELTAY"],-angle)
                    f[1].data['DELTAX']=new_x
                    f[1].data['DELTAY']=new_y
                except:
                    pass
                f[0].header['BPA']+=angle
                f.writeto(new_stokes_i_fits, overwrite=True)

            if len(self.stokes_q) > 0:
                with fits.open(self.stokes_q_path) as f:
                    # overwrite image data
                    f[0].data[0, 0, :, :] = new_image_q
                    new_stokes_q_fits = self.model_save_dir + "mod_files_q/" + self.name + "_" + self.date + "_" + "{:.0f}".format(
                        self.freq / 1e9).replace(".", "_") + "GHz.fits"
                    try:
                        f[1].header['XTENSION'] = 'BINTABLE'
                        new_x, new_y = rotate_points(f[1].data["DELTAX"], f[1].data["DELTAY"], -angle)
                        f[1].data['DELTAX'] = new_x
                        f[1].data['DELTAY'] = new_y
                    except:
                        pass
                    f[0].header['BPA'] += angle
                    f.writeto(new_stokes_q_fits, overwrite=True)
            else:
                new_stokes_q_fits = ""

            if len(self.stokes_u) > 0:
                with fits.open(self.stokes_u_path) as f:
                    # overwrite image data
                    f[0].data[0, 0, :, :] = new_image_u
                    new_stokes_u_fits = self.model_save_dir + "mod_files_u/" + self.name + "_" + self.date + "_" + "{:.0f}".format(
                        self.freq / 1e9).replace(".", "_") + "GHz.fits"
                    try:
                        f[1].header['XTENSION'] = 'BINTABLE'
                        new_x, new_y = rotate_points(f[1].data["DELTAX"], f[1].data["DELTAY"], -angle)
                        f[1].data['DELTAX'] = new_x
                        f[1].data['DELTAY'] = new_y
                    except:
                        pass
                    f[0].header['BPA'] += angle
                    f.writeto(new_stokes_u_fits, overwrite=True)
            else:
                new_stokes_u_fits = ""

        else:
            # CASA style
            f = fits.open(self.fits_file)
            # overwrite image data
            f[0].data[0, 0, :, :] = new_image_i
            f[0].data[1, 0, :, :] = new_image_q
            f[0].data[2, 0, :, :] = new_image_u
            new_stokes_i_fits = self.model_save_dir + "mod_files_clean/" + self.name + "_" + self.date + "_" + "{:.0f}".format(
                self.freq / 1e9).replace(".", "_") + "GHz.fits"
            f[0].header['BPA'] += angle
            f.writeto(new_stokes_i_fits, overwrite=True, output_verify='ignore')
            new_stokes_q_fits = ""
            new_stokes_u_fits = ""

        # if model loaded try rotating as well
        try:
            if not self.model_file_path == self.fits_file:
                if not self.model_file_path == "":

                    new_image_model=scipy.ndimage.rotate(fits.open(self.model_file_path)[0].data,-angle,reshape=reshape,order=order)

                    with fits.open(self.model_file_path) as f:
                        f[0].data[0, 0, :, :] = new_image_model
                        new_model_fits = self.model_save_dir + "mod_files_model/" + self.name + "_" + self.date + "_" + "{:.0f}".format(
                self.freq / 1e9).replace(".", "_") + "GHz.fits"
                        try:
                            f[1].header['XTENSION'] = 'BINTABLE'
                            new_x, new_y = rotate_points(f[1].data["DELTAX"], f[1].data["DELTAY"], -angle)
                            f[1].data['DELTAX'] = new_x
                            f[1].data['DELTAY'] = new_y
                        except:
                            pass
                        f[0].header['BPA'] += angle
                        f.writeto(new_model_fits, overwrite=True)
                else:
                    new_model_fits = ""
            else:
                new_model_fits = new_stokes_i_fits
        except:
            logger.warning("Model not regridded, probably no model loaded.")
            new_model_fits = ""

        if not self.model_inp:
            new_model_fits=""

        self.beam_pa+=angle

        newImageData= ImageData(fits_file=new_stokes_i_fits,
                     uvf_file=self.uvf_file,
                     stokes_q=new_stokes_q_fits,
                     stokes_u=new_stokes_u_fits,
                     mask=new_mask,
                     redshift=self.redshift,
                     ridgeline=self.ridgeline,
                     counter_ridgeline=self.counter_ridgeline,
                     noise_method=self.noise_method,
                     model_save_dir=self.model_save_dir,
                     model=new_model_fits,
                     correct_rician_bias=self.correct_rician_bias,
                     comp_ids=self.get_model_info()[0],
                     core_comp_id=self.get_model_info()[1],
                     difmap_path=self.difmap_path,
                     fit_comp_polarization=self.fit_comp_pol,
                     fit_comp_pol_errors=self.fit_comp_pol_errors,
                     uvw=self.uvw,
                     uvtaper=self.uvtaper)

    else:

        if not self.model_inp:
            self.model_file_path=""

        newImageData=ImageData(fits_file=self.fits_file,
                     uvf_file=self.uvf_file,
                     stokes_q=self.stokes_q_path,
                     stokes_u=self.stokes_u_path,
                     mask=self.mask,
                     redshift=self.redshift,
                     ridgeline=self.ridgeline,
                     counter_ridgeline=self.counter_ridgeline,
                     noise_method=self.noise_method,
                     model_save_dir=self.model_save_dir,
                     model=self.model_file_path,
                     correct_rician_bias=self.correct_rician_bias,
                     comp_ids=self.get_model_info()[0],
                     core_comp_id=self.get_model_info()[1],
                     difmap_path=self.difmap_path,
                     fit_comp_polarization=self.fit_comp_pol,
                     fit_comp_pol_errors=self.fit_comp_pol_errors,
                     uvw=self.uvw,
                     uvtaper=self.uvtaper)

        rotate_mod_file(self.stokes_i_mod_file,angle,self.stokes_i_mod_file)
        try:
            rotate_mod_file(self.stokes_q_mod_file,angle,self.stokes_q_mod_file)
            rotate_mod_file(self.stokes_u_mod_file,angle,self.stokes_u_mod_file)
        except:
            logger.debug("Could not rotate polarization, probably not loaded.")
        try:
            rotate_mod_file(self.model_mod_file,angle,self.model_mod_file)
        except:
            logger.debug("Could not rotate model, probably not loaded.")

        newImageData.uvf_file=new_uvf
        newImageData.mask=new_mask
        newImageData.beam_pa+=angle

        newImageData=newImageData.restore()

    return newImageData

set_core_component(id)

Function to set the core component

Parameters:
  • id (int) –

    Component ID of the core component

Source code in vcat/image_data.py
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
def set_core_component(self,id):
    """
    Function to set the core component

    Args:
        id (int): Component ID of the core component
    """

    core_ind=""
    for ind, comp in enumerate(self.components):
        if comp.component_number==id:
            self.components[ind].is_core=True
            core_ind=ind
        else:
            self.components[ind].is_core=False

    if core_ind=="":
        logger.warning(f"No component with ID {id} found, no core currently set!")
    else:
        #recalculate core distances for every component
        for i, comp in enumerate(self.components):
            core=self.components[core_ind]
            self.components[i].set_distance_to_core(core.x, core.y,core.x_err,core.y_err)

shift(shift_x, shift_y, useDIFMAP=True)

Function to shift the image in RA and Dec.

Parameters:
  • shift_x (float) –

    Shift in Right Ascension (in mas)

  • shift_y (float) –

    Shift in Declination (in mas)

  • npix (int) –

    Option to change the number of pixels in ONE direction.

  • pixel_size (float) –

    Option to change the pixel size (in mas)

  • useDIFMAP (bool, default: True ) –

    Choose whether to use DIFMAP for shifting or not.

Returns:
  • image( ImageData ) –

    shifted ImageData object

Source code in vcat/image_data.py
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
def shift(self,shift_x,shift_y,useDIFMAP=True):
    """
    Function to shift the image in RA and Dec.

    Args:
        shift_x (float): Shift in Right Ascension (in mas)
        shift_y (float): Shift in Declination (in mas)
        npix (int): Option to change the number of pixels in ONE direction.
        pixel_size (float): Option to change the pixel size (in mas)
        useDIFMAP (bool): Choose whether to use DIFMAP for shifting or not.

    Returns:
        image (ImageData): shifted ImageData object
    """
    try:
        #We can just call the restore() function without doing the restore steps
        return self.restore(-1,-1,-1,shift_x,shift_y,useDIFMAP=useDIFMAP)
    except:
        raise Exception("No shift possible, something went wrong!")

write_mod_file_from_casa(channel='i', export='export.mod')

Writes a .mod file from a CASA exported .fits model file. Args: file_path: File path to a .fits model file as exported from a CASA .model file (e.g. with exportfits() in CASA) channel: Choose the Stokes channel to use (options: "i","q","u","v") export: File path where to write the .mod file

Returns:
  • Nothing, but writes a .mod file to export

Source code in vcat/image_data.py
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
def write_mod_file_from_casa(self,channel="i",export="export.mod"):

    """Writes a .mod file from a CASA exported .fits model file.
        Args:
            file_path: File path to a .fits model file as exported from a CASA .model file (e.g. with exportfits() in CASA)
            channel: Choose the Stokes channel to use (options: "i","q","u","v")
            export: File path where to write the .mod file

        Returns:
            Nothing, but writes a .mod file to export
        """

    if channel == "i":
        clean_map = self.Z
    elif channel == "q":
        clean_map = self.stokes_q
    elif channel == "u":
        clean_map = self.stokes_u
    else:
        raise Exception("Please enter a valid channel (i,q,u)")

    # read out clean components from pixel map
    delta_x = []
    delta_y = []
    flux = []
    zeros = []
    for i in range(len(self.X)):
        for j in range(len(self.Y)):
            if clean_map[j][i] > 0:
                delta_x.append(self.X[i] / self.scale)
                delta_y.append(self.Y[j] / self.scale)
                flux.append(clean_map[j][i])
                zeros.append(0.0)

    # create model_df
    model_df = pd.DataFrame(
        {'Flux': flux,
         'Delta_x': delta_x,
         'Delta_y': delta_y,
         'Major_axis': zeros,
         'Minor_axis': zeros,
         'PA': zeros,
         'Typ_obj': zeros
         })

    # create mod file
    write_mod_file(model_df, export, self.freq, self.scale)

Jy2JyPerBeam(jpp, b_maj, b_min, px_inc)

Converts Jy/px to Jy/beam

Parameters:
  • jpp

    Jansky per pixel

  • b_maj

    Major Axis

  • b_min

    Minor Axis

  • px_inc

    pixel size

Returns:
  • jpb

    Jansky per pixel value

Source code in vcat/helpers.py
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
def Jy2JyPerBeam(jpp,b_maj,b_min,px_inc):
    """Converts Jy/px to Jy/beam

        Args:
            jpp: Jansky per pixel
            b_maj: Major Axis
            b_min: Minor Axis
            px_inc: pixel size

        Returns:
            jpb: Jansky per pixel value

        """

    return jpp*PXPERBEAM(b_maj,b_min,px_inc)

JyPerBeam2Jy(jpb, b_maj, b_min, px_inc)

Converts Jy/beam to Jy

Parameters:
  • jbp

    Jansky per beam value

  • b_maj

    Major Axis

  • b_min

    Minor Axis

  • px_inc

    pixel size

Returns:
  • jy

    Jansky value

Source code in vcat/helpers.py
804
805
806
807
808
809
810
811
812
813
814
815
816
817
def JyPerBeam2Jy(jpb,b_maj,b_min,px_inc):
    """Converts Jy/beam to Jy

    Args:
        jbp: Jansky per beam value
        b_maj: Major Axis
        b_min: Minor Axis
        px_inc: pixel size

    Returns:
        jy: Jansky value
    """

    return jpb/PXPERBEAM(b_maj,b_min,px_inc)

PXPERBEAM(b_maj, b_min, px_inc)

calculates the pixels per beam.

Parameters:
  • b_maj

    major axis

  • b_min

    minor axis

  • px_inc

    pixel size

Returns:
  • ppb

    pixels per beam

Source code in vcat/helpers.py
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
def PXPERBEAM(b_maj,b_min,px_inc):
    """calculates the pixels per beam.

    Args:
        b_maj: major axis
        b_min: minor axis
        px_inc: pixel size

    Returns:
        ppb: pixels per beam

    """

    beam_area = np.pi/(4*np.log(2))*b_min*b_maj
    PXPERBEAM = beam_area/(px_inc**2)
    return PXPERBEAM

calculate_beam_width(angle, beam_maj, beam_min, beam_pa)

Calculate width of a beam at a certain angle

Parameters:
  • angle

    Angle in degrees

  • beam_maj

    Beam major axis length

  • beam_min

    beam minor axis length

  • beam_pa

    beam position angle in degrees

Returns:
  • beam_width

    Width at the given angle

Source code in vcat/helpers.py
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
def calculate_beam_width(angle, beam_maj, beam_min, beam_pa):
    """
    Calculate width of a beam at a certain angle

    Args:
        angle: Angle in degrees
        beam_maj: Beam major axis length
        beam_min: beam minor axis length
        beam_pa: beam position angle in degrees

    Returns:
        beam_width: Width at the given angle
    """
    new_pos=beam_pa-angle

    beam = Ellipse(Point(0, 0), hradius=beam_maj / 2, vradius=beam_min / 2)
    line = Line(Point(0, 0), Point(np.cos(new_pos / 180 * np.pi), np.sin(new_pos / 180 * np.pi)))
    p1, p2 = beam.intersect(line)
    width = float(p1.distance(p2))

    return width
    return width

convolve_with_elliptical_gaussian(image, sigma_x, sigma_y, theta)

Convolves a 2D image with an elliptical Gaussian kernel.

Source code in vcat/helpers.py
1134
1135
1136
1137
1138
def convolve_with_elliptical_gaussian(image, sigma_x, sigma_y, theta):
    """Convolves a 2D image with an elliptical Gaussian kernel."""
    kernel = elliptical_gaussian_kernel(image.shape[1], image.shape[0], sigma_x, sigma_y, theta)
    convolved = scipy.signal.fftconvolve(image, kernel, mode='same')
    return convolved

elliptical_gaussian_kernel(size_x, size_y, sigma_x, sigma_y, theta)

Generate an elliptical Gaussian kernel with rotation.

Source code in vcat/helpers.py
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
def elliptical_gaussian_kernel(size_x, size_y, sigma_x, sigma_y, theta):
    """Generate an elliptical Gaussian kernel with rotation."""
    y, x = np.meshgrid(np.linspace(-size_y//2, size_y//2, size_y), np.linspace(-size_x//2, size_x//2, size_x))

    # Rotation matrix
    theta = np.deg2rad(theta)
    x_rot = x * np.cos(theta) - y * np.sin(theta)
    y_rot = x * np.sin(theta) + y * np.cos(theta)

    # Elliptical Gaussian formula
    g = np.exp(-(x_rot ** 2 / (2 * sigma_x ** 2) + y_rot ** 2 / (2 * sigma_y ** 2)))
    return g / np.sum(g)  # Normalize the kernel

fit_width(dist, width, width_err=False, dist_err=False, fit_type='brokenPowerlaw', x0=False, fit_r0=True, s=100)

Fit a power-law or broken-powerlaw to jet width

Source code in vcat/helpers.py
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
def fit_width(dist,width,
                width_err=False,
                dist_err=False,
                fit_type='brokenPowerlaw',
                x0=False,
                fit_r0=True,
                s=100):
    '''Fit a power-law or broken-powerlaw to jet width'''

    if x0==False:
        if fit_type=='brokenPowerlaw' and fit_r0:
            x0=[0.3, 0, 1, 2, 0]
        elif fit_type=='brokenPowerlaw':
            x0=[0.3,0,1,2]
        elif fit_type=="Powerlaw" and fit_r0:
            x0=[0.1,1,0]
        elif fit_type=="Powerlaw":
            x0=[0.1,1]
        else:
            raise Exception("Please select valid fit_type ('Powerlaw', 'brokenPowerlaw')")

    if fit_type == 'Powerlaw':
        if dist_err:
            beta,sd_beta,chi2,out = fit_pl(dist,width,width_err,sx=dist_err,x0=x0,fit_r0=fit_r0)
        else:
            beta,sd_beta,chi2,out = fit_pl(dist,width,width_err,x0=x0,fit_r0=fit_r0)

    elif fit_type=='brokenPowerlaw':
        if dist_err:
            beta,sd_beta,chi2,out = fit_bpl(dist,width,width_err,sx=dist_err,x0=x0,fit_r0=fit_r0,s=s)
        else:
            beta,sd_beta,chi2,out = fit_bpl(dist,width,width_err,x0=x0,fit_r0=fit_r0,s=s)

    return beta, sd_beta, chi2, out

func_turn(x, i0, turn, alpha0, alphat=2.5)

Turnover frequency function.

Source code in vcat/helpers.py
1195
1196
1197
def func_turn(x, i0, turn, alpha0, alphat = 2.5):
    """Turnover frequency function."""
    return i0 * (x / turn)**alphat * (1.0 - np.exp(-(turn / x)**(alphat - alpha0)))

getComponentInfo(filename, scale=60 * 60 * 1000, year=0, mjd=0, date=0)

Imports component info from a modelfit .fits or .mod file.

Parameters:
  • filename

    Path to a modelfit (or clean) .fits or .mod file

Returns:
  • output( DataFrame ) –

    Model data (Flux, Delta_x, Delta_y, Major Axis, Minor Axis, PA, Typ_obj)

Source code in vcat/helpers.py
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
def getComponentInfo(filename,scale=60*60*1000,year=0,mjd=0,date=0):
    """Imports component info from a modelfit .fits or .mod file.

    Args:
        filename: Path to a modelfit (or clean) .fits or .mod file

    Returns:
        output (DataFrame): Model data (Flux, Delta_x, Delta_y, Major Axis, Minor Axis, PA, Typ_obj)
    """

    if is_fits_file(filename):
        #read in fits file
        data_df = pd.DataFrame()
        hdu_list = fits.open(filename)
        try:
            comp_data = hdu_list[1].data
        except:
            logger.warning("FITS file does not contain model.")
            return None
        comp_data1 = np.zeros((len(comp_data), len(comp_data[0])))
        date = np.array([])
        year = np.array([])
        mjd = np.array([])
        date1 = get_date(filename)
        t = Time(date1)
        tjyear=t.jyear
        tmjd=t.mjd
        for j in range(len(comp_data)):
            comp_data1[j, :] = comp_data[j]
            date = np.append(date, date1)
            year = np.append(year, tjyear)
            mjd = np.append(mjd, tmjd)
        try:
            #DIFMAP STYLE
            comp_data1_df = pd.DataFrame(data=comp_data1,
                                         columns=["Flux", "Delta_x", "Delta_y", "Major_axis", "Minor_axis", "PA",
                                                  "Typ_obj"])
        except:
            #AIPS STYLE
            comp_data1_df = pd.DataFrame(data=comp_data1,
                                         columns=["Flux","Delta_x","Delta_y"])
            comp_data1_df["Major_axis"]=0
            comp_data1_df["Minor_axis"]=0
            comp_data1_df["PA"]=0
            comp_data1_df["Typ_obj"]=0

        comp_data1_df["Date"] = date
        comp_data1_df["Year"] = year
        comp_data1_df["mjd"] = mjd
        comp_data1_df.sort_values(by=["Delta_x", "Delta_y"], ascending=False, inplace=True)
        if data_df.empty:
            data_df = comp_data1_df
        else:
            data_df = pd.concat([data_df, comp_data1_df], axis=0, ignore_index=True)
        os.makedirs("tmp",exist_ok=True)

        #write Radius, ratio and Angle also to database
        data_df['radius'] = np.sqrt(data_df['Delta_x'] ** 2 + data_df['Delta_y'] ** 2) * scale

        # Function to calculate 'theta'
        def calculate_theta(row):
            if (row['Delta_y'] > 0 and row['Delta_x'] > 0) or (row['Delta_y'] > 0 and row['Delta_x'] < 0):
                return np.arctan(row['Delta_x'] / row['Delta_y']) / np.pi * 180
            elif (row['Delta_y'] < 0 and row['Delta_x'] > 0):
                return np.arctan(row['Delta_x'] / row['Delta_y']) / np.pi * 180 + 180
            elif (row['Delta_y'] < 0 and row['Delta_x'] < 0):
                return np.arctan(row['Delta_x'] / row['Delta_y']) / np.pi * 180 - 180
            return 0

        # Apply function to calculate 'theta'
        data_df['theta'] = data_df.apply(calculate_theta, axis=1)

        # Calculate 'ratio'
        data_df['ratio'] = data_df.apply(lambda row: row['Minor_axis'] / row['Major_axis'] if row['Major_axis'] > 0 else 0,
                                     axis=1)
    else:
        #will assume that the file is a .mod file
        flux = np.array([])
        radius = np.array([])
        theta = np.array([])
        maj= np.array([])
        ratio = np.array([])
        pa = np.array([])
        typ_obj = np.array([])

        with open(filename, "r") as file:
            for line in file:
                if not line.startswith("!"):
                    linepart=line.split()
                    flux = np.append(flux,float(linepart[0].replace("v","")))
                    radius = np.append(radius,float(linepart[1].replace("v","")))
                    theta = np.append(theta,float(linepart[2].replace("v","")))
                    #other parameters might not be there, try
                    try:
                        maj = np.append(maj,float(linepart[3].replace("v","")))
                        ratio = np.append(ratio,float(linepart[4].replace("v","")))
                        pa = np.append(pa,float(linepart[5].replace("v","")))
                        typ_obj = np.append(typ_obj,1) # in this case it is a gaussian model component
                    except:
                        maj = np.append(maj,0)
                        ratio = np.append(ratio,0)
                        pa = np.append(pa,0)
                        typ_obj = np.append(typ_obj,0) #in this case it is a clean component
        #import completed now calculate additional parameters:
        delta_x=radius*np.sin(theta/180*np.pi)/scale
        delta_y=radius*np.cos(theta/180*np.pi)/scale
        maj=maj/scale
        min=ratio*maj

        #create data_df
        data_df = pd.DataFrame({'ratio': ratio, 'Minor_axis': min, 'Major_axis': maj, 'theta': theta, 'Delta_y': delta_y,
                                'Delta_x': delta_x ,"Flux": flux, "PA": pa, "Typ_obj": typ_obj})

        data_df["mjd"]=mjd
        data_df["Year"]=year
        data_df["Date"]=date

    return data_df

getMinVolEllipse(P=None, tolerance=0.1)

Find the minimum volume ellipsoid which holds all the points

Based on work by Nima Moshtagh http://www.mathworks.com/matlabcentral/fileexchange/9542 and also by looking at: http://cctbx.sourceforge.net/current/python/scitbx.math.minimum_covering_ellipsoid.html Which is based on the first reference anyway!

Here, P is a numpy array of 2 dimensional points like this: P = [[x,y], <-- one point per line [x,y], [x,y]]

Returns: (center, radii, rotation): output

Source code in vcat/helpers.py
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
def getMinVolEllipse(P=None, tolerance=0.1):
        """ Find the minimum volume ellipsoid which holds all the points

        Based on work by Nima Moshtagh
        http://www.mathworks.com/matlabcentral/fileexchange/9542
        and also by looking at:
        http://cctbx.sourceforge.net/current/python/scitbx.math.minimum_covering_ellipsoid.html
        Which is based on the first reference anyway!

        Here, P is a numpy array of 2 dimensional points like this:
        P = [[x,y], <-- one point per line
             [x,y],
             [x,y]]

        Returns:
        (center, radii, rotation): output

        """

        (N, d) = np.shape(P)
        d = float(d)

        # Q will be our working array
        Q = np.vstack([np.copy(P.T), np.ones(N)])
        QT = Q.T

        # initializations
        err = 1.0 + tolerance
        u = (1.0 / N) * np.ones(N)

        # Khachiyan Algorithm
        while err > tolerance:
            V = np.dot(Q, np.dot(np.diag(u), QT))
            M = np.diag(np.dot(QT , np.dot(linalg.inv(V), Q)))    # M the diagonal vector of an NxN matrix
            j = np.argmax(M)
            maximum = M[j]
            step_size = (maximum - d - 1.0) / ((d + 1.0) * (maximum - 1.0))
            new_u = (1.0 - step_size) * u
            new_u[j] += step_size
            err = np.linalg.norm(new_u - u)
            u = new_u

        # center of the ellipse
        center = np.dot(P.T, u)

        # the A matrix for the ellipse
        A = linalg.inv(
                       np.dot(P.T, np.dot(np.diag(u), P)) -
                       np.array([[a * b for b in center] for a in center])
                       ) / d
        # Get the values we'd like to return
        U, s, rotation = linalg.svd(A)
        radii = 1.0/np.sqrt(s)

        return (center, radii, rotation)

get_common_beam(majs, mins, posas, arg='common', ppe=100, tolerance=0.0001, plot_beams=False)

Derive the beam to be used for the maps to be aligned.

Parameters:
  • majs

    List of Major Axis Values

  • mins

    List of Minor Axis Values

  • posas

    List of Position Angles (in degrees)

  • arg

    Type of algorithm to use ("mean", "max", "median", "circ", "common")

  • ppe

    Points per Ellipse for "common" algorithm

  • tolerance

    Tolerance parameter for "common" algorithm

  • plot_beams

    Boolean to choose if a diagnostic plot of all beams and the common beam should be displayed

Returns:
  • [maj, min, pos]: List with new major and minor axis and position angle

Source code in vcat/helpers.py
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
def get_common_beam(majs,mins,posas,arg='common',ppe=100,tolerance=0.0001,plot_beams=False):
    '''Derive the beam to be used for the maps to be aligned.

    Args:
        majs: List of Major Axis Values
        mins: List of Minor Axis Values
        posas: List of Position Angles (in degrees)
        arg: Type of algorithm to use ("mean", "max", "median", "circ", "common")
        ppe: Points per Ellipse for "common" algorithm
        tolerance: Tolerance parameter for "common" algorithm
        plot_beams: Boolean to choose if a diagnostic plot of all beams and the common beam should be displayed

    Returns:
        [maj, min, pos]: List with new major and minor axis and position angle
    '''

    if arg=='mean':
        _maj = np.mean(majs)
        _min = np.mean(mins)
        _pos = np.mean(posas)
        logger.info('Will use mean beam.')
    elif arg=='max':
        if np.argmax(majs)==np.argmax(mins):
            beam_ind=np.argmax(majs)
            _maj = majs[beam_ind]
            _min = mins[beam_ind]
            _pos = posas[beam_ind]
        else:
            logger.warning('could not derive max beam, defaulting to common beam.')
            return get_common_beam(majs,mins,posas,arg="common")
        logger.info('Will use max beam.')
    elif arg=='median':
        _maj = np.median(majs)
        _min = np.median(mins)
        _pos = np.median(posas)
        logger.info('Will use median beam.')
    elif arg == 'circ':
        _maj = np.median(majs)
        _min = _maj
        _pos = 0
    elif arg == 'common':
        if plot_beams:
            fig = plt.figure()
            ax = fig.add_subplot()

        sample_points = np.empty(shape=(ppe * len(majs), 2))
        for ind in range(len(majs)):
            bmaj = majs[ind]
            bmin = mins[ind]
            posa = posas[ind]/180*np.pi

            if len(majs) == 1:
                return bmaj, bmin, posa

            # sample ellipse points
            ellipse_angles = np.linspace(0, 2 * np.pi, ppe)
            X = -bmin / 2 * np.sin(ellipse_angles)
            Y = bmaj / 2 * np.cos(ellipse_angles)

            # rotate them according to position angle
            X_rot = X * np.cos(posa) - Y * np.sin(posa)
            Y_rot = X * np.sin(posa) + Y * np.cos(posa)

            for i in range(ppe):
                sample_points[ind * ppe + i] = np.array([X_rot[i], Y_rot[i]])
            if plot_beams:
                plt.plot(X_rot, Y_rot, c="k")

        # find minimum ellipse
        (center, radii, rotation) = getMinVolEllipse(sample_points, tolerance=tolerance)

        # find out bmaj, bmin and posa
        bmaj_ind = np.argmax(radii)

        if bmaj_ind == 0:
            bmaj = 2 * radii[0]
            bmin = 2 * radii[1]
            posa = -np.arcsin(rotation[1][0]) / np.pi * 180 - 90
        else:
            bmaj = 2 * radii[1]
            bmin = 2 * radii[0]
            posa = -np.arcsin(rotation[1][0]) / np.pi * 180

        # make posa from -90 to +90
        if posa > 90:
            posa = posa - 180
        elif posa < -90:
            posa = posa + 180

        # plot ellipsoid
        if plot_beams:
            from matplotlib import patches
            ellipse = patches.Ellipse(center, bmin, bmaj, angle=posa, fill=False, zorder=2, linewidth=2, color="r")
            ax.add_patch(ellipse)

            ax.axis("equal")
            plt.show()

        _maj = bmaj
        _min = bmin
        _pos = posa
    else:
        raise Exception("Please use a valid arg value ('common', 'max', 'median', 'mean', 'circ')")


    common_beam=[_maj,_min,_pos]
    logger.info("{} beam calculated: {}".format(arg,common_beam))
    return common_beam

get_comp_peak_rms(x, y, fits_file, uvf_file, mfit_file, stokes_i_mod_file, channel='i', weighting=uvw, rms_box=100, difmap_path='')

Short program to read in a .fits image and corresponding .uvfits and .mfit file (containing Gaussian modelfits) from difmap, to estimate the uncertainties of the modelfit components based on the image plane. This implementation here is the best way approximating what is described in Schinzel+ 2012, in which each component is handled individually.

Parameters:
  • x (float) –

    Center position in mas

  • y (float) –

    Center position in mas

  • fits_file (str) –

    Path to the .fits image file.

  • uvf_file (str) –

    Path to the .uvfits file containing the visibilities.

  • mfit_file (str) –

    Path to the text file containing the Gaussian modelfit components from difmap.

  • resmap_file (str) –

    Path to the residual map (output)

  • weighting (list[int], default: uvw ) –

    DIFMAP uv-weighting (default: [0,-1])

Returns:
  • S_p( list ) –

    List with peak flux densities for each component in mJy/beam.

  • rms( list ) –

    List with residual image root-mean square for each component in mJy/beam.

Source code in vcat/helpers.py
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
def get_comp_peak_rms(x, y, fits_file, uvf_file, mfit_file, stokes_i_mod_file, channel="i",weighting=uvw, rms_box=100, difmap_path=""):
    '''
    Short program to read in a .fits image and corresponding .uvfits
    and .mfit file (containing Gaussian modelfits) from difmap, to estimate the
    uncertainties of the modelfit components based on the image plane. This
    implementation here is the best way approximating what is described in
    Schinzel+ 2012, in which each component is handled individually.

    Args:
        x (float): Center position in mas
        y (float): Center position in mas
        fits_file (str): Path to the .fits image file.
        uvf_file (str): Path to the .uvfits file containing the visibilities.
        mfit_file (str): Path to the text file containing the Gaussian modelfit components from difmap.
        resmap_file (str): Path to the residual map (output)
        weighting (list[int]): DIFMAP uv-weighting (default: [0,-1])

    Returns:
        S_p (list): List with peak flux densities for each component in mJy/beam.
        rms (list): List with residual image root-mean square for each
          component in mJy/beam.

    '''

    env = os.environ.copy()

    # add difmap to PATH
    if difmap_path != None and not difmap_path in os.environ['PATH']:
        env['PATH'] = env['PATH'] + ':{0}'.format(difmap_path)

    # remove potential difmap boot files (we don't need them)
    env["DIFMAP_LOGIN"] = ""

    # Initialize difmap call
    child = pexpect.spawn('difmap', encoding='utf-8', echo=False,env=env)
    child.expect_exact('0>', None, 2)

    def send_difmap_command(command,prompt='0>'):
        child.sendline(command)
        child.expect_exact(prompt, None, 2)

    # print('Using .fits and .uvf file')
    ms_x, ps_x, ms_y, ps_y = get_ms_ps(fits_file)


    send_difmap_command('observe ' + uvf_file)
    send_difmap_command('select I')
    send_difmap_command('uvw '+str(weighting[0])+','+str(weighting[1]))    # use natural weighting as default
    send_difmap_command('rmod ' + stokes_i_mod_file)
    send_difmap_command('selfcal') #this is required in case the map is shifted (difmap does not store phase shifts!)
    send_difmap_command('select ' +  channel)
    send_difmap_command('rmod ' + mfit_file)
    send_difmap_command("selfcal")
    send_difmap_command('mapsize '+str(2*ms_x)+','+str(ps_x)+','+ str(2*ms_y)+','+str(ps_y))
    send_difmap_command(f'wdmap tmp/resmap_model.fits')
    ra = x
    dec = y

    send_difmap_command('dev /NULL')
    send_difmap_command('mapl cln')
    send_difmap_command('addwin '+str(ra-0.1*ps_x)
                             +','+str(ra+0.1*ps_x)
                             +','+str(dec-0.1*ps_y)
                             +','+str(dec+0.1*ps_y))
    send_difmap_command('winmod true')
    send_difmap_command('mapl map')
    send_difmap_command('print mapvalue('+str(ra)
                                     +','+str(dec)+')')

    os.system("rm -rf difmap.log*")

    try:
        for j, str_ in enumerate(child.before[::-1]):
            if str_ =='.':
                j_end = j
                break
        S_p = float(child.before[-j_end-2:])
    except ValueError:
        logger.warning('Could not read off peak flux density for component.')
        print(child.before)
        S_p = np.nan

    rms = get_noise_from_residual_map("tmp/resmap_model.fits", ra, dec, rms_box)

    return S_p, rms

get_date(filename)

Returns the date of an observation from a .fits file.

Parameters:
  • filename

    Path to the .fits file

Returns:
  • Date in the format year-month-day

Source code in vcat/helpers.py
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
def get_date(filename):
    """Returns the date of an observation from a .fits file.

    Args:
        filename: Path to the .fits file

    Returns:
        Date in the format year-month-day
    """

    hdu_list=fits.open(filename)
    try:
        # Plot date
        time = hdu_list[0].header["DATE-OBS"]
        time = time.split("T")[0]
        time = time.split("/")
        if len(time) == 1:
            date = time[0]
        elif len(time) == 3:
            if len(time[0]) < 2:
                day = "0" + time[0]
            else:
                day = time[0]
            if len(time[1]) < 2:
                month = "0" + time[1]
            else:
                month = time[1]
            if len(time[2]) == 2:
                if 45 < int(time[2]) < 100:
                    year = "19" + time[2]
                elif int(time[2]) < 46:
                    year = "20" + time[2]
            elif len(time[2]) == 4:
                year = time[2]
            date = year + "-" + month + "-" + day
    except:
        time = hdu_list[0].header["MJD"]
        date=Time(time,format="mjd").strftime('%Y-%m-%d')
    return date

get_noise_from_residual_map(residual_fits, center_x, center_y, rms_box=100, mode='std')

calculates the noise from the residual map in a given box

Parameters:
  • residual_fits

    Path to .fits file with residual map

  • center_x

    X-center of the box to use for noise calculation in mas

  • center_y

    Y-center of the box to use for noise calculation in mas

  • rms_box

    Width of the box in pixels

Returns:
  • noise( float ) –

    Noise in the given box from the residual map

Source code in vcat/helpers.py
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
def get_noise_from_residual_map(residual_fits, center_x, center_y, rms_box=100,mode="std"):
    """calculates the noise from the residual map in a given box

    Args:
        residual_fits: Path to .fits file with residual map
        center_x: X-center of the box to use for noise calculation in mas
        center_y: Y-center of the box to use for noise calculation in mas
        rms_box: Width of the box in pixels

    Returns:
        noise (float): Noise in the given box from the residual map
    """

    ms_x, ps_x, ms_y, ps_y = get_ms_ps(residual_fits)
    resMAP_data = fits.getdata(residual_fits)
    resMAP_data = np.squeeze(resMAP_data)
    xdim = len(np.array(resMAP_data)[0])
    ydim = len(np.array(resMAP_data)[:, 0])
    if mode=="std":
        rms = np.std(resMAP_data[int(round(ydim / 2 + center_y / ps_y, 0)) - int(rms_box / 2)
                                 :int(round(ydim / 2 + center_y / ps_y, 0)) + int(rms_box / 2),
                     int(round(xdim / 2 - center_x / ps_x, 0)) - 1 - int(rms_box / 2)
                     :int(round(xdim / 2 - center_x / ps_x, 0)) - 1 + int(rms_box / 2)])
    elif mode=="aver":
        rms = np.average(resMAP_data[int(round(ydim / 2 + center_y / ps_y, 0)) - int(rms_box / 2)
                                 :int(round(ydim / 2 + center_y / ps_y, 0)) + int(rms_box / 2),
                     int(round(xdim / 2 - center_x / ps_x, 0)) - 1 - int(rms_box / 2)
                     :int(round(xdim / 2 - center_x / ps_x, 0)) - 1 + int(rms_box / 2)])
    return rms

get_residual_map(uvf_file, mod_file, clean_mod_file, difmap_path=difmap_path, channel='i', save_location='residual.fits', weighting=uvw, npix=2048, pxsize=0.05, do_selfcal=False)

calculates residual map and stores it as .fits file.

Parameters:
  • uvf_file

    Path to a .uvf file

  • mod_file

    Path to a .mod file

  • difmap_path

    Path to the DIFMAP executable

  • save_location

    Path where to store the residual map .fits file

  • npix

    Number of pixels to use

  • pxsize

    Pixel Size (usually in mas)

Returns:
  • Nothing, but writes a .fits file including the residual map

Source code in vcat/helpers.py
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
def get_residual_map(uvf_file,mod_file, clean_mod_file, difmap_path=difmap_path, channel="i", save_location="residual.fits", weighting=uvw,
                     npix=2048,pxsize=0.05,do_selfcal=False):
    """ calculates residual map and stores it as .fits file.

    Args:
        uvf_file: Path to a .uvf file
        mod_file: Path to a .mod file
        difmap_path: Path to the DIFMAP executable
        save_location: Path where to store the residual map .fits file
        npix: Number of pixels to use
        pxsize: Pixel Size (usually in mas)

    Returns:
        Nothing, but writes a .fits file including the residual map
    """
    env = os.environ.copy()

    # add difmap to PATH
    if difmap_path != None and not difmap_path in os.environ['PATH']:
        env['PATH'] = env['PATH'] + ':{0}'.format(difmap_path)

    #remove potential difmap boot files (we don't need them)
    env["DIFMAP_LOGIN"]=""
    # Initialize difmap call
    child = pexpect.spawn('difmap', encoding='utf-8', echo=False,env=env)
    child.expect_exact("0>", None, 2)

    def send_difmap_command(command, prompt="0>"):
        child.sendline(command)
        child.expect_exact(prompt, None, 2)

    send_difmap_command("obs "+uvf_file)
    if do_selfcal:
        send_difmap_command("select i")
        send_difmap_command("rmod " + clean_mod_file)
        send_difmap_command("selfcal")
    send_difmap_command(f"select {channel}")
    send_difmap_command(f"rmod {mod_file}")
    send_difmap_command('uvw '+str(weighting[0])+','+str(weighting[1]))  # use natural weighting
    send_difmap_command("maps " + str(npix) + "," + str(pxsize))
    send_difmap_command("wdmap " + save_location) #save the residual map to a fits file

    os.system("rm -rf difmap.log*")

get_uvf_frequency(filepath)

Extracts frequency from the FITS header by finding the correct CVALX.

Source code in vcat/helpers.py
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
def get_uvf_frequency(filepath):
    """Extracts frequency from the FITS header by finding the correct CVALX."""
    with fits.open(filepath) as hdu_list:
        header = hdu_list[0].header
        for i in range(1, 100):  # Check CTYPE1 to CTYPE99 (assuming X is within this range)
            ctype_key = f"CTYPE{i}"
            cval_key = f"CRVAL{i}"
            if ctype_key in header and "FREQ" in header[ctype_key]:
                return float(header[cval_key])
        raise ValueError(f"Frequency keyword not found in {filepath}")

mas2pc(z=None, d=None)

To convert mas to parsec.

Uses either a redshift (z) or a distance (d) to compute the conversion from mas to parsec.

Parameters:
  • z (float, default: None ) –

    redshift

  • d (float, default: None ) –

    distance

Returns:
  • result( float ) –

    the conversion between mas and parsec.

Source code in vcat/helpers.py
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
def mas2pc(z=None,d=None):
    """To convert mas to parsec.

    Uses either a redshift (z) or a distance (d) to compute the conversion from mas to parsec.

    Args:
        z (float): redshift
        d (float): distance

    Returns:
        result (float): the conversion between mas and parsec.

    """
    cosmo=FlatLambdaCDM(H0=H0,Om0=Om0) #Planck Collaboration 2020

    if d:
        D=d*1e6*u.parsec
    else:
        D=cosmo.angular_diameter_distance(z)
    return (D*np.pi/180/3.6e6).to(u.parsec)

plot_pixel_fit(frequencies, brightness, err_brightness, fitted_func, pixel, popt, peak_brightness)

Plot the data points and fitted function for a specific pixel.

Source code in vcat/helpers.py
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
def plot_pixel_fit(frequencies, brightness, err_brightness, fitted_func, pixel, popt, peak_brightness):
    """Plot the data points and fitted function for a specific pixel."""
    x_smooth = np.linspace(min(frequencies), max(frequencies), 10000)  # High-resolution x-axis
    y_smooth = func_turn(x_smooth, *popt)  # Fitted function for high-res x-axis
    plt.figure(figsize=(10, 6))
    plt.style.use('default')
    plt.errorbar(frequencies, brightness, yerr=err_brightness, fmt='o', color='blue', label='Data Points')
    plt.plot(x_smooth, y_smooth, color='red', label=f'Fitted Function\nPeak: {peak_brightness:.2f} GHz')
    plt.xlabel('Frequency [GHz]', fontsize=16)
    plt.ylabel('Brightness [Jy/beam]', fontsize=16)
    plt.title(f'Pixel ({pixel[1]}, {pixel[0]})', fontsize=18)
    plt.xticks(fontsize=14)
    plt.yticks(fontsize=14)
    plt.legend(fontsize=14)
    plt.grid()
    #plt.savefig(f'pixel_fit_{pixel[1]}_{pixel[0]}.pdf', format='pdf', dpi=300, bbox_inches='tight')
    plt.show()

rotate_points(x, y, angle_deg)

Rotate points (x, y) by angle (in degrees) around the origin.

Source code in vcat/helpers.py
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
def rotate_points(x, y, angle_deg):
    """ Rotate points (x, y) by angle (in degrees) around the origin. """
    angle_rad = np.radians(angle_deg)  # Convert degrees to radians
    cos_theta, sin_theta = np.cos(angle_rad), np.sin(angle_rad)

    # Apply rotation matrix
    x_new = cos_theta * x - sin_theta * y
    y_new = sin_theta * x + cos_theta * y

    return x_new, y_new

set_figsize(width, fraction=1, subplots=(1, 1), ratio=False)

Set aesthetic figure dimensions to avoid scaling in latex. Taken from https://jwalton.info/Embed-Publication-Matplotlib-Latex/

Parameters:
  • width (float or string) –

    Width in pts, or string of predined document type

  • fraction ((float, optional), default: 1 ) –

    Fraction of the width which you wish the figure to occupy

  • subplots (tuple(int, default: (1, 1) ) –

    The number of rows and columns of subplots

Returns:
  • fig_dim( tuple ) –

    Dimensions of figure in inches

Source code in vcat/helpers.py
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
def set_figsize(width, fraction=1,subplots=(1,1),ratio=False):
    """ Set aesthetic figure dimensions to avoid scaling in latex.
    Taken from https://jwalton.info/Embed-Publication-Matplotlib-Latex/

    Args:
        width (float or string): Width in pts, or string of predined document type
        fraction (float,optional): Fraction of the width which you wish the figure to occupy
        subplots (tuple(int)): The number of rows and columns of subplots

    Returns:
        fig_dim (tuple): Dimensions of figure in inches
    """


    if width.find('_')!=-1:
        w = width.split('_')
        width = w[0]
        fraction= float(w[1])
    if width =='aanda':
        width_pt = 256.0748
    elif width =='aanda*':
        width_pt = 523.5307
    elif width == 'beamer':
        width_pt = 342
    elif width == 'screen':
        width_pt = 600
    else:
        width_pt = width
    # Width of figure
    fig_width_pt = width_pt * fraction

    # Convert from pt to inches
    inches_per_pt = 1 / 72.27

    # Golden ratio to set aesthetic figure height
    golden_ratio = (5**0.5 - 1) / 2.
    if not ratio:
        ratio = golden_ratio

    # Figure width in inches
    fig_width_in = fig_width_pt * inches_per_pt
    # Figure height in inches
    fig_height_in = fig_width_in * ratio* (subplots[0] / subplots[1])

    return (fig_width_in, fig_height_in)

total_flux_from_mod(mod_file, squared=False)

needs a mod_file as input an returns the total flux

Parameters:
  • mod_file

    Path to a .mod file

  • squared

    If true, returns the sum of the squared fluxes (useful for polarization)

Returns:
  • The total flux in the .mod file (usually in mJy, depending on the .mod file)

Source code in vcat/helpers.py
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
def total_flux_from_mod(mod_file,squared=False):
    """needs a mod_file as input an returns the total flux

    Args:
        mod_file: Path to a .mod file
        squared: If true, returns the sum of the squared fluxes (useful for polarization)

    Returns:
        The total flux in the .mod file (usually in mJy, depending on the .mod file)
    """

    lines=open(mod_file).readlines()
    total_flux=0
    for line in lines:
        if not line.startswith("!"):
            linepart=line.split()
            if squared:
                total_flux+=float(linepart[0])**2
            else:
                total_flux+=float(linepart[0])
    return total_flux

wrap_evpas(evpas)

Checks for EVPA changes >90 or <-90 degreees and wraps them

Parameters:
  • evpas (list[float]) –

    List of EVPA values in degrees

Returns:
  • evpas( list[float] ) –

    List of wrapped EVPAs

Source code in vcat/helpers.py
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
def wrap_evpas(evpas):
    """
    Checks for EVPA changes >90 or <-90 degreees and wraps them

    Args:
        evpas (list[float]): List of EVPA values in degrees

    Returns:
        evpas (list[float]): List of wrapped EVPAs
    """

    for i in range(len(evpas)):
        if i>0:
            if evpas[i] - evpas[i - 1] > 90:
                for l in range(i, len(evpas)):
                    evpas[l] -= 180
            if evpas[i] - evpas[i - 1] < -90:
                for l in range(i, len(evpas)):
                    evpas[l] += 180
    return evpas

write_mod_file(model_df, writepath, freq, scale=60 * 60 * 1000, adv=False)

writes a .mod file given an input DataFrame with component info.

Parameters:
  • model_df

    DataFrame with model component info (e.g. generated by getComponentInfo())

  • writepath

    Filepath where to write the .mod file

  • freq

    Frequency of the observation in GHz

  • scale

    Conversion of the image scale to degrees (default milli-arc-seconds -> 60601000)

Returns:
  • Nothing, but writes a .mod file to writepath

Source code in vcat/helpers.py
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
def write_mod_file(model_df,writepath,freq,scale=60*60*1000,adv=False):

    """writes a .mod file given an input DataFrame with component info.

    Args:
        model_df: DataFrame with model component info (e.g. generated by getComponentInfo())
        writepath: Filepath where to write the .mod file
        freq: Frequency of the observation in GHz
        scale: Conversion of the image scale to degrees (default milli-arc-seconds -> 60*60*1000)

    Returns:
        Nothing, but writes a .mod file to writepath
    """

    flux = np.array(model_df["Flux"])
    delta_x = np.array(model_df["Delta_x"])
    delta_y = np.array(model_df["Delta_y"])
    maj = np.array(model_df["Major_axis"])
    min = np.array(model_df["Minor_axis"])
    pos = np.array(model_df["PA"])
    typ_obj = np.array(model_df["Typ_obj"])

    original_stdout=sys.stdout
    sys.stdout=open(writepath,'w')

    radius=[]
    theta=[]
    ratio=[]

    for ind in range(len(flux)):
        radius.append(np.sqrt(delta_x[ind]**2+delta_y[ind]**2)*scale)
        if (delta_y[ind]>0 and delta_x[ind]>0) or (delta_y[ind]>0 and delta_x[ind]<0):
            theta.append(np.arctan(delta_x[ind]/delta_y[ind])/np.pi*180)
        elif delta_y[ind]<0 and delta_x[ind]>0:
            theta.append(np.arctan(delta_x[ind]/delta_y[ind])/np.pi*180+180)
        elif delta_y[ind]<0 and delta_x[ind]<0:
            theta.append(np.arctan(delta_x[ind] / delta_y[ind]) / np.pi * 180 - 180)
        else:
            if delta_x[ind] > 0 and delta_y[ind]==0:
                theta.append(90)
            elif delta_x[ind] < 0 and delta_y[ind]==0:
                theta.append(-90)
            elif delta_x[ind] == 0 and delta_y[ind] < 0:
                theta.append(180)
            else:
                theta.append(0)
        if maj[ind]>0:
            ratio_val=min[ind]/maj[ind]
            if ratio_val>1:
                #swap maj and min if needed
                m=maj[ind]
                maj[ind]=min[ind]
                min[ind]=m
                pos[ind]=pos[ind]+90
            ratio.append(min[ind]/maj[ind])
        else:
            ratio.append(0)

    #sort by flux
    argsort=flux.argsort()[::-1]
    flux=np.array(flux)[argsort]
    radius=np.array(radius)[argsort]
    theta=np.array(theta)[argsort]
    maj=np.array(maj)[argsort]
    ratio=np.array(ratio)[argsort]
    pos=np.array(pos)[argsort]
    typ_obj=np.array(typ_obj)[argsort]

    #check if we need to add "v" to the components to make them fittable
    if isinstance(adv,list):
        ad=[]
        for ads in adv:
            if ads:
                ad.append("v")
            else:
                ad.append("")
        if len(adv)!=6:
            #make sure ad has seven elements
            for i in range(6-len(adv)):
                ad.append("")
    elif adv:
        ad=["v","v","v","v","v","v"]
    else:
        ad=["","","","","",""]

    for ind in range(len(flux)):
        print(" "+"{:.8f}".format(flux[ind])+ad[0]+"   "+
              "{:.8f}".format(radius[ind])+ad[1]+"    "+
              "{:.3f}".format(theta[ind])+ad[2]+"   "+
              "{:.7f}".format(maj[ind]*scale)+ad[3]+"    "+
              "{:.6f}".format(ratio[ind])+ad[4]+"   "+
              "{:.4f}".format(pos[ind])+ad[5]+"  "+
              str(int(typ_obj[ind]))+" "+
              "{:.5E}".format(freq)+"   0")

    sys.stdout = original_stdout

write_mod_file_from_casa(image_data, channel='i', export='export.mod')

Writes a .mod file from a CASA exported .fits model file.

Parameters:
  • file_path

    Image_data object

  • channel

    Choose the Stokes channel to use (options: "i","q","u","v")

  • export

    File path where to write the .mod file

Returns:
  • Nothing, but writes a .mod file to export

Source code in vcat/helpers.py
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
def write_mod_file_from_casa(image_data,channel="i",export="export.mod"):
    """Writes a .mod file from a CASA exported .fits model file.

    Args:
        file_path: Image_data object
        channel: Choose the Stokes channel to use (options: "i","q","u","v")
        export: File path where to write the .mod file

    Returns:
        Nothing, but writes a .mod file to export
    """

    if channel=="i":
        clean_map=image_data.Z
    elif channel=="q":
        clean_map=image_data.stokes_q
    elif channel=="u":
        clean_map=image_data.stokes_u
    else:
        raise Exception("Please enter a valid channel (i,q,u)")

    #read out clean components from pixel map
    delta_x=[]
    delta_y=[]
    flux=[]
    zeros=[]
    for i in range(len(image_data.X)):
        for j in range(len(image_data.Y)):
            if clean_map[j][i]>0:
                delta_x.append(image_data.X[i]/image_data.scale)
                delta_y.append(image_data.Y[j]/image_data.scale)
                flux.append(clean_map[j][i])
                zeros.append(0.0)

    #create model_df
    model_df=pd.DataFrame(
        {'Flux': flux,
         'Delta_x': delta_x,
         'Delta_y': delta_y,
         'Major_axis': zeros,
         'Minor_axis': zeros,
         'PA': zeros,
         'Typ_obj': zeros
         })

    #create mod file
    write_mod_file(model_df,export,image_data.freq,image_data.scale)

write_mod_file_from_components(components, channel='i', export='export.mod', adv=False)

Writes a .mod file from a given list of component objects

Parameters:
  • components (list[Component]) –

    List of component objects to include in the .mod file

  • channel (str, default: 'i' ) –

    polarization channel ("I","Q","U")

  • export (str, default: 'export.mod' ) –

    file path of the .mod file to be created

Source code in vcat/helpers.py
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
def write_mod_file_from_components(components,channel="i",export="export.mod",adv=False):
    """
    Writes a .mod file from a given list of component objects

    Args:
        components (list[Component]): List of component objects to include in the .mod file
        channel (str): polarization channel ("I","Q","U")
        export (str): file path of the .mod file to be created
    """
    flux = []
    delta_x = []
    delta_y = []
    maj = []
    min = []
    pos = []
    typ_obj = []

    for comp in components:
        if channel in ["i","I"]:
            flux = np.append(flux,comp.flux)
        delta_x = np.append(delta_x,comp.x)
        delta_y = np.append(delta_y,comp.y)
        maj = np.append(maj,comp.maj)
        min = np.append(min,comp.min)
        pos = np.append(pos, comp.pos)
        typ_obj = np.append(typ_obj, 1) #for gauss component

        if channel in ["u","U","q","U"]:
            #calculate U and Q flux from lin_pol and evpa
            chi = comp.evpa
            if chi > 90:
                chi -= 180
            if chi < -90:
                chi += 180
            if chi >= 0 and chi < 45:
                pre_q = +1
                pre_u = +1
            elif chi >= 45 and chi <= 90:
                pre_u = +1
                pre_q = -1
            elif chi <= 0 and chi >= -45:
                pre_q = +1
                pre_u = -1
            elif chi <= -45 and chi >= -90:
                pre_q = -1
                pre_u = -1

            chi = 2 * comp.evpa / 180 * np.pi
            U = pre_u * abs(np.tan(chi) * comp.lin_pol / np.sqrt(1 + np.tan(chi) ** 2))
            Q = pre_q * abs(comp.lin_pol / np.sqrt(1 + np.tan(chi) ** 2))
            if channel in ["q","Q"]:
                flux = np.append(flux, Q)
            else:
                flux = np.append(flux, U)

    model_df = pd.DataFrame({"Flux": flux,
                             "Delta_x": delta_x,
                             "Delta_y": delta_y,
                             "Major_axis": maj,
                             "Minor_axis": min,
                             "PA": pos,
                             "Typ_obj": typ_obj})
    if len(components)>0:
        write_mod_file(model_df,export,components[0].freq,components[0].scale,adv=adv)